Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2023, Vol. 43 Issue (1): 6-12    DOI: 10.11902/1005.4537.2022.049
Current Issue | Archive | Adv Search |
Research Progress on Corrosion of Metal Interconnector for Solid Oxide Fuel Cells
WANG Bihui, XIAO Bo, PAN Peiyuan, LIU Ju, ZHANG Naiqiang()
North China Electric Power University, College of Energy Power and Mechanical Engineering, Beijing 102206, China
Download:  HTML  PDF(1831KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Ferritic stainless steels are used in solid oxide fuel cell (SOFC) as interconnect materials, which present low cost and good workability, and high electroconductivity. However, the harsh environment limits their use in SOFC stack. This paper introduces the current research status of corrosion of metallic interconnectors, summarizing researches on the influence of the air, fuel, dual atmosphere, alloying elements, and internal contact environment. The corrosion mechanism of interconnect material and the shortcomings of the research on the corrosion behavior of interconnectors, as well as the direction of future development were systematically described.

Key words:  solid oxide fuel cell      high-temperature corrosion      interconnect      ferritic stainless steel     
Received:  28 February 2022      32134.14.1005.4537.2022.049
ZTFLH:  TG172  

Cite this article: 

WANG Bihui, XIAO Bo, PAN Peiyuan, LIU Ju, ZHANG Naiqiang. Research Progress on Corrosion of Metal Interconnector for Solid Oxide Fuel Cells. Journal of Chinese Society for Corrosion and protection, 2023, 43(1): 6-12.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2022.049     OR     https://www.jcscp.org/EN/Y2023/V43/I1/6

Fig.1  Chromia and chromium-manganese oxide as a function of oxidized time at 850 ℃: (a) changes in thickness of scale with oxidation time, (b) prediction model for the thickness of the scales on each oxidation stage[9]
Fig.2  Surface morphology of AISI441 exposed at 800 ℃ during 80 h: (a) 50%CH4+50%CO2, (b) 70%CH4+30%CO2[29]
Fig.3  SEM observation of the scale on Crofer22 APU after isothermal oxidation at 800 ℃ for 300 h: (a) cross-section microstructures of the airside scale on dual atmosphere oxidized air side; (b) EDS linear analysis on cross-sections from area A in Fig.3a; (c) EDS linear analysis on cross-sections from area B in Fig.3a[32-35]
Fig.4  Schematic diagram of materials interaction at the anode side of SOFC in case of ferritic steel intercon-nect in contact with Ni wire mesh[23]
1 Wang Z Q, Li C, Si X Q, et al. Oxidation behavior of ferritic stainless steel interconnect coated by a simple diffusion bonded cobalt protective layer for solid oxide fuel cells [J]. Corros. Sci., 2020, 172: 108739
doi: 10.1016/j.corsci.2020.108739
2 Wu J W, Liu X B. Recent development of SOFC metallic interconnect [J]. J. Mater. Sci. Technol., 2010, 26: 293
3 Vayyala A, Povstugar I, Naumenko D, et al. A nanoscale study of thermally grown chromia on high-Cr ferritic steels and associated oxidation mechanisms [J]. J. Electrochem. Soc., 2020, 167: 061502
4 Wongpromrat W, Berthomé G, Parry V, et al. Reduction of chromium volatilisation from stainless steel interconnector of solid oxide electrochemical devices by controlled preoxidation [J]. Corros. Sci., 2016, 106: 172
doi: 10.1016/j.corsci.2016.02.002
5 Fergus J W. Metallic interconnects for solid oxide fuel cells [J]. Mater. Sci. Eng., 2005, 397A: 271
6 Alnegren P, Sattari M, Svensson J E, et al. Severe dual atmosphere effect at 600 ℃ for stainless steel 441 [J]. J. Power Sources, 2016, 301: 170
doi: 10.1016/j.jpowsour.2015.10.001
7 Robertson J. The mechanism of high temperature aqueous corrosion of stainless steels [J]. Corros. Sci., 1991, 32: 443
doi: 10.1016/0010-938X(91)90125-9
8 Hammer J E, Laney S J, Jackson R W, et al. The oxidation of ferritic stainless steels in simulated solid-oxide fuel-cell atmospheres [J]. Oxid. Met., 2007, 67: 1
doi: 10.1007/s11085-006-9041-y
9 Park M, Shin J S, Lee S, et al. Thermal degradation mechanism of ferritic alloy (Crofer 22 APU) [J]. Corros. Sci., 2018, 134: 17
doi: 10.1016/j.corsci.2018.01.022
10 Huczkowski P, Christiansen N, Shemet V, et al. Growth mechanisms and electrical conductivity of oxide scales on ferritic steels proposed as interconnect materials for SOFC's [J]. Fuel Cells, 2006, 6: 93
doi: 10.1002/fuce.200500110
11 Huczkowski P, Christiansen N, Shemet V, et al. Oxidation induced lifetime limits of chromia forming ferritic interconnector steels [J]. J. Fuel. Cell. Sci. Technol., 2004, 1: 30
doi: 10.1115/1.1782925
12 Niewolak L, Young D J, Hattendorf H, et al. Mechanisms of oxide scale formation on ferritic interconnect steel in simulated low and high pO2 service environments of solid oxide fuel cells [J]. Oxid. Met., 2014, 82: 123
doi: 10.1007/s11085-014-9481-8
13 Quadakkers W J, Piron-Abellan J, Shemet V, et al. Metallic interconnectors for solid oxide fuel cells-a review [J]. Mater. High Temp., 2003, 20: 115
14 Chiu Y T, Lin C K. Effects of Nb and W additions on high-temperature creep properties of ferritic stainless steels for solid oxide fuel cell interconnect [J]. J. Power Sources, 2012, 198: 149
doi: 10.1016/j.jpowsour.2011.09.056
15 Froitzheim J, Meier G H, Niewolak L, et al. Development of high strength ferritic steel for interconnect application in SOFCs [J]. J. Power Sources, 2008, 178: 163
doi: 10.1016/j.jpowsour.2007.12.028
16 Seo H S, Jin G X, Jun J H, et al. Effect of reactive elements on oxidation behaviour of Fe-22Cr-0.5Mn ferritic stainless steel for a solid oxide fuel cell interconnect [J]. J. Power Sources, 2008, 178: 1
doi: 10.1016/j.jpowsour.2007.12.026
17 Jin G X, Pan F H, Lang C, et al. Elevated temperature electrical conductivity of STS 444/Y alloy used for SOFC interconnects [J]. J. Chin. Soc. Corros. Prot., 2011, 31: 367
金光熙, 潘凤红, 郎成 等. SOFC连接体用STS444/Y合金的高温导电性能研究 [J]. 中国腐蚀与防护学报, 2011, 31: 367
18 Alnegren P, Sattari M, Froitzheim J, et al. Degradation of ferritic stainless steels under conditions used for solid oxide fuel cells and electrolyzers at varying oxygen pressures [J]. Corros. Sci., 2016, 110: 200
doi: 10.1016/j.corsci.2016.04.030
19 Miao Z Y, Chen L, Zhang W Y, et al. Formation and thermal stress analysis of oxide of interconnects alloy in SOFC reduction atmosphere [J]. Rare Met. Mater. Eng., 2021, 50: 2069
缪钟毅, 陈霖, 张文颖 等. 连接体合金在SOFC还原气氛下氧化膜的形成及热应力分析 [J]. 稀有金属材料与工程, 2021, 50: 2069
20 Gunduz K O, Chyrkin A, Goebel C, et al. The effect of hydrogen on the breakdown of the protective oxide scale in solid oxide fuel cell interconnects [J]. Corros. Sci., 2021, 179: 109112
doi: 10.1016/j.corsci.2020.109112
21 Quadakkers W J, Hänsel M, Rieck T. Carburization of Cr-based ODS alloys in SOFC relevant environments [J]. Mater. Corros., 1998, 49: 252
doi: 10.1002/(SICI)1521-4176(199804)49:4<252::AID-MACO252>3.0.CO;2-H
22 Jian L, Huezo J, Ivey D G. Carburisation of interconnect materials in solid oxide fuel cells [J]. J. Power Sources, 2003, 123: 151
doi: 10.1016/S0378-7753(03)00535-4
23 Niewolak L, Wessel E, Hüttel T, et al. Behavior of interconnect steels in carbon containing simulated anode gas of solid oxide fuel cells [J]. J. Electrochem. Soc., 2012, 159: F725
doi: 10.1149/2.033211jes
24 Zeng Z. Corrosion of metallic interconnects for SOFC in fuel gases [J]. Solid State Ionics, 2004, 167: 9
doi: 10.1016/j.ssi.2003.11.026
25 Grabke H J. Carburization, carbide formation, metal dusting, coking [J]. Mater. Tehnol., 2002, 36: 297
26 Horita T, Kshimoto H, Yamaji K, et al. Anomalous oxidation of ferritic interconnects in solid oxide fuel cells [J]. Int. J. Hydrogen Energy, 2008, 33: 3962
doi: 10.1016/j.ijhydene.2007.07.058
27 Horita T, Kishimoto H, Yamaji K, et al. Oxide Scale Formation and Stability of Fe-Cr Alloy Interconnects under Dual Atmospheres and Current Flow Conditions for SOFCs [J]. J. Electrochem. Soc., 2006, 153: A2007
doi: 10.1149/1.2335944
28 Promdirek P, Lothongkum G, Wouters Y, et al. Effect of humidity on the corrosion kinetics of ferritic stainless steels subjected to synthetic biogas [J]. Mater. Sci. Forum, 2011, 696: 417
doi: 10.4028/www.scientific.net/MSF.696.417
29 Promdirek P, Lothongkhum G, Chandra-Ambhorn S, et al. Behaviour of ferritic stainless steels subjected to dry biogas atmospheres at high temperatures [J]. Mater. Corros., 2010, 62: 616
30 Liu K J, Luo J H, Johnson C, et al. Conducting oxide formation and mechanical endurance of potential solid-oxide fuel cell interconnects in coal syngas environment [J]. J. Power Sources, 2008, 183: 247
doi: 10.1016/j.jpowsour.2008.04.025
31 Chou Y S, Stevenson J W, Singh P. Effect of pre-oxidation and environmental aging on the seal strength of a novel high-temperature solid oxide fuel cell (SOFC) sealing glass with metallic interconnect [J]. J. Power Sources, 2008, 184: 238
doi: 10.1016/j.jpowsour.2008.06.020
32 Yang Z, Xia G, Walker M, et al. High temperature oxidation/corrosion behavior of metals and alloys under a hydrogen gradient [J]. Int. J. Hydrogen Energy, 2007, 32: 3770
doi: 10.1016/j.ijhydene.2006.08.056
33 Yang Z G, Xia G G, Singh P, et al. Effects of water vapor on oxidation behavior of ferritic stainless steels under solid oxide fuel cell interconnect exposure conditions [J]. Solid State Ionics, 2005, 176: 1495
doi: 10.1016/j.ssi.2005.03.019
34 Yang Z G, Walker M S, Singh P, et al. Anomalous corrosion behavior of stainless steels under SOFC interconnect exposure conditions [J]. Electrochem. Solid-State Lett., 2003, 6: B35
doi: 10.1149/1.1603012
35 Yang Z G, Walker M S, Singh P, et al. Oxidation behavior of ferritic stainless steels under SOFC interconnect exposure conditions [J]. J. Electrochem. Soc., 2004, 151: B669
doi: 10.1149/1.1810393
36 Goebel C, Alnegren P, Faust R, et al. The effect of pre-oxidation parameters on the corrosion behavior of AISI 441 in dual atmosphere [J]. Int. J. Hydrogen Energy, 2018, 43: 14665
doi: 10.1016/j.ijhydene.2018.05.165
37 Skilbred A W B, Haugsrud R. The effect of water vapour on the corrosion of sandvik sanergy HT under dual atmosphere conditions [J]. Oxid. Met., 2013, 79: 639
doi: 10.1007/s11085-012-9313-7
38 Galerie A, Petit J P, Wouters Y, et al. Water vapour effects on the oxidation of chromia-forming alloys [J]. Mater. Sci. Forum, 2011, 696: 200
doi: 10.4028/www.scientific.net/MSF.696.200
39 Hultquist G, Tveten B, Hörnlund E. Hydrogen in chromium: influence on the high-temperature oxidation kinetics in H2O, oxide-growth mechanisms, and scale adherence [J]. Oxid. Met., 2000, 54: 1
doi: 10.1023/A:1004610626903
40 Park E, Hüning B, Spiegel M. Evolution of near-surface concentration profiles of Cr during annealing of Fe-15Cr polycrystalline alloy [J]. Appl. Surf. Sci., 2005, 249: 127
doi: 10.1016/j.apsusc.2004.11.078
41 Essuman E, Meier G H, Żurek J, et al. The effect of water vapor on selective oxidation of Fe-Cr alloys [J]. Oxid. Met., 2008, 69: 143
doi: 10.1007/s11085-007-9090-x
42 Holcomb G R, Ziomek-Moroz M, Cramer S D, et al. Dual-environment effects on the oxidation of metallic interconnects [J]. J. Mater. Eng. Perform., 2006, 15: 404
doi: 10.1361/105994906X117198
43 Alnegren P, Sattari M, Svensson J E, et al. Temperature dependence of corrosion of ferritic stainless steel in dual atmosphere at 600-800  ℃ [J]. J. Power Sources, 2018, 392: 129
doi: 10.1016/j.jpowsour.2018.04.088
44 Zhou J W, Chen Q F, Sang J K, et al. Conductivity and oxidation behavior of Fe-16Cr alloy as solid oxide fuel cell interconnect under long-stability and thermal cycles [J]. Acta Metall. Sin. (Engl. Lett.), 2021, 34: 668
doi: 10.1007/s40195-020-01147-4
45 Kurokawa H, Oyama Y, Kawamura K, et al. Hydrogen permeation through Fe-16Cr alloy interconnect in atmosphere simulating SOFC at 1073 K [J]. J. Electrochem. Soc., 2004, 151: A1264
doi: 10.1149/1.1767349
46 Young D J, Zurek J, Singheiser L, et al. Temperature dependence of oxide scale formation on high-Cr ferritic steels in Ar-H2-H2O [J]. Corros. Sci., 2011, 53: 2131
doi: 10.1016/j.corsci.2011.02.031
47 Babelot C, Fang Q, Blum L, et al. Investigation of Ni-coated-steel-meshes as alternative anode contact material to nickel in an SOFC stack [J]. Int. J. Hydrogen Energy, 2019, 44: 8493
doi: 10.1016/j.ijhydene.2019.01.282
48 Garcia-Fresnillo L, Shemet V, Chyrkin A, et al. Long-term behaviour of solid oxide fuel cell interconnect materials in contact with Ni-mesh during exposure in simulated anode gas at 700 and 800 ℃ [J]. J. Power Sources, 2014, 271: 213
doi: 10.1016/j.jpowsour.2014.07.189
49 Li J, Zhang W Y, Yang J J, et al. Oxidation behavior of metallic interconnect in solid oxide fuel cell stack [J]. J. Power Sources, 2017, 353: 195
doi: 10.1016/j.jpowsour.2017.03.092
50 Li Y H, Jiang Y L, Wu J W, et al. Effect of electrical current on solid oxide fuel cells metallic interconnect oxidation in syngas [J]. Int. J. Appl. Ceram. Technol., 2010, 7: 41
doi: 10.1111/j.1744-7402.2009.02430.x
51 Li Y H, Jiang Y L, Wu J W, et al. Corrosion behavior of ebrite and SS430 in coal syngas with loaded current [J]. Int. J. Appl. Ceram. Technol., 2011, 8: 60
doi: 10.1111/j.1744-7402.2010.02553.x
52 Si X Q, Cao J, Ritucci I, et al. Enhancing the long-term stability of Ag based seals for solid oxide fuel/electrolysis applications by simple interconnect aluminization [J]. Int. J. Hydrogen Energy, 2019, 44: 3063
doi: 10.1016/j.ijhydene.2018.11.071
53 Kobsiriphat W, Barnett S. Ag-Cu-Ti braze materials for sealing SOFCs [J]. J. Fuel. Cell. Sci. Technol., 2008, 5: 011002
54 Haanappel V A C, Shemet V, Gross S M, et al. Behaviour of various glass-ceramic sealants with ferritic steels under simulated SOFC stack conditions [J]. J. Power Sources, 2005, 150: 86
doi: 10.1016/j.jpowsour.2005.02.015
55 Batfalsky P, Haanappel V A C, Malzbender J, et al. Chemical interaction between glass-ceramic sealants and interconnect steels in SOFC stacks [J]. J. Power Sources, 2006, 155: 128
doi: 10.1016/j.jpowsour.2005.05.046
56 Sakai N, Horita T, Yamaji K, et al. Material transport and degradation behavior of SOFC interconnects [J]. Solid State Ionics, 2006, 177: 1933
doi: 10.1016/j.ssi.2006.04.044
57 Jackson R W, Pettit F S, Meier G H. The behavior of nickel and silver in a simulated solid oxide fuel cell environment [J]. J. Power Sources, 2008, 185: 1030
doi: 10.1016/j.jpowsour.2008.08.056
[1] ZHANG Huiyun, ZHENG Liuwei, MENG Xianming, LIANG Wei. Effect of Electrochemical Hydrogen Charging on Hydrogen Embrittlement Sensitivity of Cr15 Ferritic and 304 Austenitic Stainless Steels[J]. 中国腐蚀与防护学报, 2021, 41(2): 202-208.
[2] Shuyuan LIANG, Cuiyu JIANG. Corrosion Mechanism of Oil-fired Boiler in Power Plant and Progresses in Anticorrosion Techniques Inside Boiler[J]. 中国腐蚀与防护学报, 2018, 38(2): 105-116.
[3] ZHANG Hui, WANG Anqi, WU Junwei. ADVANCES IN PROTECTIVE COATING FOR SOFC METALLIC INTERCONNECT[J]. 中国腐蚀与防护学报, 2012, 32(5): 357-363.
[4] ZHANG Yong, QIN Zuoxiang, XU Hongji, CHANG Kai, LU Xing, TONG Wei. CORROSION RESISTANCE OF DISSIMILAR METAL JOINTS OF ECONOMIC FERRITIC STAINLESS STEEL AND WEATHERING STEEL[J]. 中国腐蚀与防护学报, 2012, 32(2): 115-122.
[5] JIN Guangxi, PAN Fenghong, LANG Cheng,QIAO Lijie. ELEVATED TEMPERATURE ELECTRICAL CONDUCTIVITY OF STS444/Y ALLOY USED FOR SOFC INTERCONNECTS[J]. 中国腐蚀与防护学报, 2011, 31(5): 367-370.
No Suggested Reading articles found!