Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (5): 771-778    DOI: 10.11902/1005.4537.2021.232
Current Issue | Archive | Adv Search |
Aerobic Corrosion Process of Q235 Steel in NaHCO3 Solutions
XUE Fang(), LIU Liangyu, TAN Long
Naval Architecture and Port Engineering College, Shandong Jiaotong University, Weihai 264200, China
Download:  HTML  PDF(3755KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The activation- and passivation-behavior of Q235 low carbon steel was investigated by means of mass loss measurement, electrochemical measurements, and surface characterization techniques. Results show that in NaHCO3 solutions, the corrosion behavior of low carbon steel in the initial stage was quite different from that in the last stage, especially in the solutions of low NaHCO3 concentrations, which may be related to the variation of corrosion products formed on the surface of the steel. HCO3- could influence the corrosion kinetics of Q235 steel in naturally aerated conditions. When the content of HCO3- was limited, the anodic/cathodic reactions were determined by charge transfer process, while by diffusion process in solutions with high concentrations of HCO3-. The corrosion rate of Q235 steel was affected by the morphology and compactness of corrosion products in NaHCO3 solutions with different HCO3- concentrations. High concentration of HCO3- was beneficial to the formation of compact corrosion products, which could diminish the corrosion rate of low carbon steel.

Key words:  Q235 low carbon steel      HCO3- concentrations      activation/passivation      corrosion dynamics      corrosion products     
Received:  03 September 2021     
ZTFLH:  TG174  
Fund: Startup Foundation for Docotors of Shandong Jiaotong University(BS2018003)
Corresponding Authors:  XUE Fang     E-mail:  fxue12s@alum.imr.ac.cn
About author:  XUE Fang, E-mail: fxue12s@alum.imr.ac.cn

Cite this article: 

XUE Fang, LIU Liangyu, TAN Long. Aerobic Corrosion Process of Q235 Steel in NaHCO3 Solutions. Journal of Chinese Society for Corrosion and protection, 2022, 42(5): 771-778.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2021.232     OR     https://www.jcscp.org/EN/Y2022/V42/I5/771

Fig.1  Potentio-dynamic polarization curves of Q235 steel immersed in NaHCO3 solutions for 30 min (a) and 30 d (b)
Fig.2  Variation of OCP of Q235 steel with time during 30 d immersion in NaHCO3 solutions
Fig.3  Evolutions of EIS of Q235 steel during 30 d immersion in 0.01 mol/L (a), 0.1 mol/L (b) and 1 mol/L (c) NaHCO3 solutions
Immersion time / dRs / Ω·cm2Ydl / mS·s n ·cm-2nRct / Ω·cm2
1337.481.80×10-40.82778.87×103
2375.568.90×10-50.83092.71×105
3302.271.50×10-30.473231.26×103
5197.912.83×10-30.581441.14×103
8123.363.30×10-30.608571.33×103
1191.372.99×10-30.601782.61×103
2081.031.94×10-30.525532.69×103
2578.172.89×10-30.553795.21×103
3051.922.22×10-30.633093.78×103
Table 1  Fitting results of EIS data of Q235 steel after immersion in 0.01 mol/L NaHCO3 solution
Immersion time / dRs / Ω·cm2Ydl / mS·s n ·cm-2nRct / Ω·cm2Yw / mS·s n ·cm-2
143.268.5×10-50.84061.42×105---
250.635.5×10-50.87433.58×1042.09×10-7
350.954.0×10-50.90176.58×1048.78×10-7
549.183.5×10-50.91215.63×1041.11×10-6
846.763.3×10-50.91122.95×1041.64×10-7
1144.903.3×10-50.90461.98×1047.37×10-7
2040.489.3×10-50.85422.05×1033.51×10-4
2539.798.4×10-50.86291.96×1031.65×10-5
3037.071.1×10-40.83321.52×1031.95×10-3
Table 2  Fitting results of EIS data of Q235 steel after immersion in 0.1 mol/L NaHCO3 solution
Immersion time / dL / H·cm2Rs / Ω·cm2Ydl / mS·s n ·cm-2nRct / Ω·cm2Yw / mS·s n ·cm-2
11.19×10-68.5041.05×10-40.90452.81×1042.13×10-23
21.25×10-67.4398.18×10-50.92363.24×1046.66×10-17
31.25×10-67.9047.40×10-50.92952.99×1044.31×10-19
51.34×10-67.6527.18×10-50.93302.36×1045.93×10-18
81.38×10-65.2737.18×10-50.92972.26×1042.50×10-17
111.68×10-67.5397.32×10-50.92871.72×1041.89×10-17
151.39×10-66.1377.56×10-50.92361.37×1042.38×10-18
201.16×10-64.4608.46×10-50.90802.52×1041.31×10-17
251.40×10-64.9898.18×10-50.91674.50×1032.70×10-20
301.36×10-65.0338.84×10-50.91112.33×1036.52×10-24
Table 3  Fitting results of EIS data of Q235 steel after immersion in 1 mol/L NaHCO3 solution
Fig.4  Equivalent circuits for fitting EIS of Q235 steel during immersion in 0.01 mol/L (a), 0.1 mol/L (b) and 1 mol/L (c) NaHCO3 solutions
Fig.5  Surface morphologies of Q235 steel immersed for 30 d in 0.01 mol/L (a), 0.1 mol/L (b) and 1 mol/L (c) NaHCO3 solutions
Fig.6  E-pH diagrams of Fe-H2O-CO2 in 0.01 mol/L[28] (a) and 0.1 mol/L[29] (b) NaHCO3 solutions
Fig.7  Schematic diagrams of corrosion mechanism of Q235 steel during immersion in 0.01 mol/L (a) and 0.1 mol/L (b) NaHCO3 solutions
1 King F. Container materials for the storage and disposal of nuclear waste [J]. Corrosion, 2013, 69: 986
doi: 10.5006/0894
2 Zheng M, Zhang Q C, Huang Y L, et al. Determination of representative ground-water for corrosion assessment of candidate materials used in Beishan area preselected for high-level radioactive waste disposal repository [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 185
郑珉, 张琦超, 黄彦良 等. 中国高放废物处置库甘肃北山预选区腐蚀研究用代表性地下水成分的确定 [J]. 中国腐蚀与防护学报, 2016, 36: 185
3 Wei Q L, Liu Y B, Yang B, et al. Corrosion behavior of Q235 carbon steel in simulated groundwater in Gansu Beishan area with high-strength γ irradiation [J]. At. Energy Sci. Technol., 2019, 53: 59
魏强林, 刘义保, 杨波 等. 强γ辐照下Q235碳钢在甘肃北山地区地下水模拟液中的腐蚀行为 [J]. 原子能科学技术, 2019, 53: 59
4 Guo Y H, Yang T X, Liu S F. Hydrogeological characteristics of Beishan preselected area, Gansu province for China's high-level radioactive waste repository [J]. Uran. Geol., 2001, 17: 184
郭永海, 杨天笑, 刘淑芬. 高放废物处置库甘肃北山预选区水文地质特征研究 [J]. 铀矿地质, 2001, 17: 184
5 He X H, Zhang W M, Xu W D, et al. Groundwater hydrochemistry and isotopic characteristics of Chuanjing preselected area for high level radioactive waste disposal repository [J]. World Nucl. Geosci., 2020, 37: 242
贺小黑, 张卫民, 徐卫东 等. 高放废物处置库川井预选区地下水水化学及同位素特征 [J]. 世界核地质科学, 2020, 37: 242
6 Guo Y H, Wang J, Lü C H, et al. Chemical characteristics of groundwater and water-rock interaction: modeling of the Yemaquan preselected area for China's high level radioactive waste repository [J]. Earth Sci. Front., 2005, 12(spec.1) : 117
郭永海, 王驹, 吕川河 等. 高放废物处置库甘肃北山野马泉预选区地下水化学特征及水-岩作用模拟 [J]. 地学前缘, 2005, 12(特刊1) : 117
7 Guo Y H, Wang J, Liu S F, et al. Groundwater chemical characteristics of the Yemaquan section-the preselected area for China's High-level radioactive waste repository [J]. Atom. Energy Sci. Technol., 2004, 38(suppl.1) : 143
郭永海, 王驹, 刘淑芬 等. 高放废物处置库预选区野马泉岩体地下水化学特征 [J]. 原子能科学技术, 2004, 38(): 143
8 Yang S, Wang Y L, Zhang Z C, et al. Form and distribution of Pu in underground water in Beishan, Gansu, and its influence factors [J]. Gold, 2014, 35(4): 75
杨森, 王永利, 张志程 等. 甘肃北山地下水中Pu的形态分布及影响因素 [J]. 黄金, 2014, 35(4): 75
9 Sun M, Chen T, Tian W Y, et al. Calculation and analysis of the solubility of Neptunium in Beishan well 51# groundwater [J]. J. Nucl. Radioche., 2011, 33: 71
孙茂, 陈涛, 田文宇 等. 镎在北山五一井水中的溶解度计算分析 [J]. 核化学与放射化学, 2011, 33: 71
10 Jiang T, Yao J, Wang B, et al. Solubility of Np(IV) in Beishan groundwater at different temperatures [J]. J. Nucl. Radioche., 2011, 33: 77
姜涛, 姚军, 王波 等. 不同温度下Np(IV) 在北山地下水中的溶解度 [J]. 核化学与放射化学, 2011, 33: 77
11 Liu Y M, Wang J, Cao S F, et al. A large-scale THMC experiment of buffer material for geological disposal of high level radioactive waste in China [J]. Rock Soil Mech., 2013, 34: 2756
刘月妙, 王驹, 曹胜飞 等. 中国高放废物地质处置缓冲材料大型试验台架和热-水-力-化学耦合性能研究 [J]. 岩土力学, 2013, 34: 2756
12 Thomas J G N, Nurse T J, Walker R. Anodic passivation of iron in carbonate solutions [J]. Br. Corros. J., 1970, 5: 87
doi: 10.1179/000705970798324829
13 Davies D H, Burstein G T. The effects of bicarbonate on the corrosion and passivation of iron [J]. Corrosion, 1980, 36: 416
14 Videm K, Koren A M. Corrosion, passivity, and pitting of carbon steel in aqueous solutions of HCO3 -, CO2, and Cl- [J]. Corrosion, 1993, 49: 746
doi: 10.5006/1.3316127
15 Mao X, Liu X, Revie R W. Pitting corrosion of pipeline steel in dilute bicarbonate solution with chloride ions [J]. Corrosion, 1994, 50: 651
doi: 10.5006/1.3293540
16 Vatankhah G, Drogowska M, Menard H, et al. Electrodissolution of iron in sodium sulfate and sodium bicarbonate solutions at pH8 [J]. J. Appl. Electrochem., 1998, 28: 173
doi: 10.1023/A:1003230725414
17 Eliyan F F, Alfantazi A. Mechanisms of corrosion and electrochemical significance of metallurgy and environment with corrosion of iron and steel in bicarbonate and carbonate solutions—A review [J]. Corrosion, 2014, 70: 880
doi: 10.5006/1213
18 Eliyan F F, Alfantazi A. Influence of temperature on the corrosion behavior of API-X100 pipeline steel in 1-bar CO2-HCO3 - solutions: an electrochemical study [J]. Mater. Chem. Phys., 2013, 140: 508
doi: 10.1016/j.matchemphys.2013.03.061
19 Zhou J L, Li X G, Du C W, et al. Anodic electrochemical behavior of X80 pipeline steel in NaHCO3 solution [J]. Acta Metall. Sin., 2010, 46: 251
周建龙, 李晓刚, 杜翠薇 等. X80管线钢在NaHCO3溶液中的阳极电化学行为 [J]. 金属学报, 2010, 46: 251
doi: 10.3724/SP.J.1037.2009.00470
20 Zhao Y, Liang P, Shi Y H, et al. Comparison of passive films on X100 and X80 pipeline steels in NaHCO3 solution [J]. J. Chin. Soc. Corros. Prot., 2013, 33: 455
赵阳, 梁平, 史艳华 等. NaHCO3溶液中X100和X80管线钢钝化膜性能比较 [J]. 中国腐蚀与防护学报, 2013, 33: 455
21 Wagner C, Traud W. " On the Interpretation of corrosion processes through the superposition of electrochemical partial processes and on the potential of mixed electrodes," with a perspective by F. Mansfeld [J]. Corrosion, 2006, 62: 843
doi: 10.5006/1.3279894
22 Xue F, Wei X, Dong J H, et al. Effect of residual dissolved oxygen on the corrosion behavior of low carbon steel in 0.1 M NaHCO3 solution [J]. J. Mater. Sci. Technol., 2018, 34: 1349
doi: 10.1016/j.jmst.2017.11.004
23 Ma G J, Du M, Liu F G, et al. Corrosion regulation of G105 steel in different oxygen solution [J]. J. Chin. Soc. Corros. Prot., 2008, 28: 108
马桂君, 杜敏, 刘福国 等. G105钻具钢在含有溶解氧条件下的腐蚀规律 [J]. 中国腐蚀与防护学报, 2008, 28: 108
24 Wen H L, Dong J H, Ke W, et al. Active/passive behavior of low carbon steel in deaerated bicarbonate solution [J]. Acta Metall. Sin., 2014, 50: 275
文怀梁, 董俊华, 柯伟 等. 模拟高放废物地质处置环境下重碳酸盐浓度对低碳钢活化/钝化腐蚀倾向的影响 [J]. 金属学报, 2014, 50: 275
doi: 10.3724/SP.J.1037.2013.00497
25 Xu C C, Chi L, Hu G, et al. Influence of concentration of HCO3 - to anodic reaction of X70 steel [J]. J. Chin. Soc. Corros. Prot., 2005, 25: 20
许淳淳, 池琳, 胡钢 等. HCO3 -浓度对X70钢阳极反应过程的影响 [J]. 中国腐蚀与防护学报, 2005, 25: 20
26 Gong K, Wu M, Zhang S. Effect of HCO3 - on stress corrosion cracking behavior of X90 pipeline steel [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 727
宫克, 吴明, 张胜. HCO3 -对X90管线钢应力腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2021, 41: 727
27 Xue F. Corrosion behavior of Q235 low carbon steel in simulated geological disposal environment of HLW [D]. Hefei: University of Science and Technology of China, 2018
薛芳. Q235低碳钢在模拟高放废物深地质处置环境中的腐蚀行为 [D]. 合肥: 中国科学技术大学, 2018
28 Lu Y F, Dong J H, Ke W. Corrosion evolution of low alloy steel in deaerated bicarbonate solutions [J]. J. Mater. Sci. Technol., 2015, 31: 1047
doi: 10.1016/j.jmst.2014.10.013
29 Song X X, Huang S P, Wang C, et al. The initial corrosion behavior of carbon steel exposed to the coastal-industrial atmosphere in Hongyanhe [J]. Acta Metall. Sin., 2020, 56: 1355
宋学鑫, 黄松鹏, 汪川 等. 碳钢在红沿河海洋工业大气环境中的初期腐蚀行为 [J]. 金属学报, 2020, 56: 1355
30 Cao J Y, Fang Z G, Feng Y F, et al. Corrosion behavior of domestic galvanized steel in different water environment: reverse osmosis water and conditioned water [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 178
曹京宜, 方志刚, 冯亚菲 等. 国产镀锌钢在不同水环境中的腐蚀行为: II反渗透水和调质水 [J]. 中国腐蚀与防护学报, 2021, 41: 178
[1] Yun DAI,Shengdan LIU,Yunlai DENG,Xinming ZHANG. Pitting Corrosion of 7020 Aluminum Alloy in 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2017, 37(3): 279-286.
[2] Shuangqing SUN,Qifei ZHENG,Chunling LI,Xiumin WANG,Songqing HU. Effect of Corrosion Products on Long-term Atmospheric Corrosion of Pure Aluminum 8A06[J]. 中国腐蚀与防护学报, 2017, 37(2): 110-116.
[3] ;. Corrosion Behavior of N80 Steel in Simulated Water from deep Gaswell Containing Carbon Dioxide[J]. 中国腐蚀与防护学报, 2007, 27(1): 8-13 .
[4] Lijing Yan. EFFECT OF cL- ON IRON CORROSION IN H2S-CONTAINING STRONG ACIDIC SOLUTIONS[J]. 中国腐蚀与防护学报, 1999, 19(2): 79-84 .
No Suggested Reading articles found!