Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2021, Vol. 41 Issue (5): 691-696    DOI: 10.11902/1005.4537.2020.225
Current Issue | Archive | Adv Search |
Influence of Cement Type on Deterioration of Sea Sand Concrete Subjected to Corrosion of Biological Sulfuric Acid
LUO Weiwen, JI Tao(), LIN Kui
College of Civil Engineering, Fuzhou University, Fuzhou 350108, China
Download:  HTML  PDF(5740KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Two types of sea sand concretes were prepared with sulphate aluminum cement (SAC) and ordinary Portland cement (OPC), respectively. Herein, T.t bacteria (thiobacillus thiooxidans) was used to simulate biological sulfuric acid corrosive media with different pH values (1.0, 1.5 and 2.0). Then, the effect of cement type on the degradation of sea sand concretes in simulated biological sulfuric acid corrosive media was characterized in terms of mass loss rate, compressive strength, pH value of corroded layer, fraction of solidified chlorides and pore. The results show that the hydration products of sea sand concrete with OPC or SAC were partially decomposed during the biological sulfuric acid corrosion, and the main corrosion product was CaSO4·2H2O. In biological sulfuric acid corrosive environments, the sea sand concrete with SAC presents better performance than that with OPC in terms of mass loss rate, strength deterioration, solidified fraction of chlorides and pore structure.

Key words:  cement type      sulphate aluminum cement      biological sulfuric acid      sea sand concrete      deterioration     
Received:  05 November 2020     
ZTFLH:  TU528.01  
Fund: National Natural Science Foundation of China(51479036)
Corresponding Authors:  JI Tao     E-mail:  jt72@163.com
About author:  JI Tao, E-mail: jt72@163.com

Cite this article: 

LUO Weiwen, JI Tao, LIN Kui. Influence of Cement Type on Deterioration of Sea Sand Concrete Subjected to Corrosion of Biological Sulfuric Acid. Journal of Chinese Society for Corrosion and protection, 2021, 41(5): 691-696.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2020.225     OR     https://www.jcscp.org/EN/Y2021/V41/I5/691

No.OPCSACSea sandWaterAggregateSuperplasticizerRetarder
SP515054516512705.660
SS051554516512705.661.55
Table 1  Mix proportions of concretes (kg/m3)
Code<20 nm20~50 nm50~200 nm>200 nm
SP1.00.001.6331.9666.41
SP1.50.002.7629.0268.22
SP2.00.003.1135.1161.78
SS1.00.001.3335.1563.52
SS1.50.005.2133.5461.25
SS2.00.002.7630.6666.58
Table 2  Pore size distributions of two sea sand concretes with SAC and OPC after biological sulfuric acid corrosion for 84 d (%)
Fig.1  XRD patterns of surface layers of SP1.0 (a) and SS1.0 (b) sea sand concretes before and after biological sulfuric acid corrosion
Fig.2  SEM images of corrosion interface (a, c) and surface corrosion layer (b, d) of SP1.0 (a, b) and SS1.0 (c, d)
Fig.3  pH values (a) and chloride ion solidification rates (b) of the corrosion layers formed on OPC and SAC sea sand concretes during biological sulfuric acid corrosion
Fig.4  Mass loss rates (a) and compressive strengths (b) of OPC and SAC sea sand concretes during biolog-ical sulfuric acid corrosion
1 Parker C D. The corrosion of concrete [J]. Aust. J. Exp. Biol. Med. Sci., 1945, 23: 81
2 Buchanan. Berger's Handbook of Bacterial Identification [M]. Eighth Edition. Beijing: Science Press, 1984
布坎南. 伯杰细菌鉴定手册. 8版 [M]. 北京: 科学出版社, 1984
3 Estokova A, Kovalcikova M, Luptakova A, et al. Testing silica fume-based concrete composites under chemical and microbiological sulfate attacks [J]. Materials, 2016, 9: 324
4 Huang Z R, Liang X Y, Zeng J. Preliminary study on effects of accrete organisms of artificial reef material [J]. South China Fish. Sci., 2006, 2(1): 34
黄梓荣, 梁小芸, 曾嘉. 人工鱼礁材料生物附着效果的初步研究 [J]. 南方水产, 2006, 2(1): 34
5 Chen Y, Tian T, Zhao Z Y, et al. The feasibility of congealing stone materials used as artificial reef-the species composition and biomass of organisms attached to the tested modules [J]. J. Dalian Fish.Univ., 2012, 27(4): 344
陈勇, 田涛, 赵子仪等. 凝石胶凝材料作为人工鱼礁材料的可行性研究II—供试体附着生物种类与生物量 [J]. 大连海洋大学学报, 2012, 27(4): 344
6 Zhang X W, Zhang X. Present and prospect of microbial corrosion prevention of concrete [J]. Mater. Prot., 2005, 38(11): 44
张小伟, 张雄. 混凝土微生物腐蚀防治研究现状和展望 [J]. 材料保护, 2005, 38(11): 44
7 Li Z Z, Gong P H, Guan C T, et al. Study on the organisms attachment of artificial reefs constructed with five different cements [J]. Prog. Fish. Sci., 2017, 38(5): 57
李真真, 公丕海, 关长涛等. 不同水泥类型混凝土人工鱼礁的生物附着效果 [J]. 渔业科学进展, 2017, 38(5): 57
8 Qin L K, Song Y P, Zhao D F. Research on the durability of reinforced concrete in ocean environment [J]. Concrete, 2002, (12): 3
覃丽坤, 宋玉普, 赵东拂. 处于海洋环境的钢筋混凝土耐久性研究 [J]. 混凝土, 2002, (12): 3
9 Wang S J, Liu X Q, Dai Q F, et al. Distribution characteristics of marine aggregate resources and potential prospect in China [J]. Mar. Geol. Quat. Geol., 2003, 23(3): 83
王圣洁, 刘锡清, 戴勤奋等. 中国海砂资源分布特征及找矿方向 [J]. 海洋地质与第四纪地质, 2003, 23(3): 83
10 Ministry of Housing and Urban-Rural Development of the People's Republic of China. Specification for mix proportion design of ordinary concrete [S]. Beijing: China Construction Industry Press, 2011
中华人民共和国住房和城乡建设部. 普通混凝土配合比设计规程 [S]. 北京: 中国建筑工业出版社, 2011
11 Wu Z W, Lian H Z. High Performance Concrete [M]. Beijing: China Railway Press, 1999
吴中伟, 廉慧珍. 高性能混凝土 [M]. 北京: 中国铁道出版社, 1999
12 Femenias Y S, Angst U, Moro F, et al. Development of a novel methodology to assess the corrosion threshold in concrete based on simultaneous monitoring of pH and free chloride concentration [J]. Sensors, 2018, 18: 3101
13 Gao L. Experimental study on concrete durability under carbonation and acid rain corrosion [D]. Xi'an: Xi'an University of Architecture and Technology, 2008
高丽. 碳化和酸雨共同作用下混凝土耐久性的试验研究 [D]. 西安: 西安建筑科技大学, 2008
14 Suryavanshi A K, Scantlebury J D, Lyon S B. Mechanism of Friedel's salt formation in cements rich in tri-calcium aluminate [J]. Cem. Concr. Res., 1996, 26: 717
15 Wang X G. Investigation on binding and microstructure of chloride ions during transport in cement-based materials [D]. Changsha: Hunan University, 2013
王小刚. 氯离子在水泥基材料传输过程中的结合及微观结构研究 [D]. 长沙: 湖南大学, 2013
16 Page C L, Short N R, Tarras A E. Diffusion of chloride ions in hardened cement pastes [J]. Cem. Concr. Res., 1981, 11: 395
17 Page C L, Short N R, Holden W R, et al. The influence of different cements on chloride-induced corrosion of reinforcing steel [J]. Cem. Concr. Res., 1986, 16: 79
18 Zhang X W, Zhang X. Mechanism and research approach of microbial corrosion of concrete [J]. J. Build. Mater., 2006, 9: 52
张小伟, 张雄. 混凝土微生物腐蚀的作用机制和研究方法 [J]. 建筑材料学报, 2006, 9: 52
19 Kumar R, Bhattacharjee B. Porosity, pore size distribution and in situ strength of concrete [J]. Cem. Conc. Res., 2003, 33: 155
20 Zhao J, Cai G C, Gao D Y. Analysis of mechanism of resistance to chloride ion erosion of sulphoaluminate cement concrete [J]. J. Build. Mater., 2011, 14: 357
赵军, 蔡高创, 高丹盈. 硫铝酸盐水泥混凝土抗氯离子侵蚀机理分析 [J]. 建筑材料学报, 2011, 14: 357
21 Chen C Y. Corrosion mechanism of artificial reef reinforced concrete attacked by biological sulfuric acid [D]. Fuzhou: Fuzhou University, 2015
陈彩艺. 生物硫酸对人工鱼礁钢筋混凝土的腐蚀机理 [D]. 福州: 福州大学, 2015
22 Gao R D. Micro-macro degradation regularity of sulfate attack on concrete under complex environments [D]. Beijing: Tsinghua University, 2010
高润东. 复杂环境下混凝土硫酸盐侵蚀微—宏观劣化规律研究 [D]. 北京: 清华大学, 2010
[1] Bo DA,Hongfa YU,Haiyan MA,Zhangyu WU. Equivalent Electrical Circuits Fitting of Electrochemical Impedance Spectroscopy for Rebar Steel Corrosion of Coral Aggregate Concrete[J]. 中国腐蚀与防护学报, 2019, 39(3): 260-266.
[2] Zhiming Gao; Shizhe Song; Yunhai Xv. ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY ANALYSIS OF COATING DETERIORATION PROCESS WITH KOHONEN NEURAL NETWORKS[J]. 中国腐蚀与防护学报, 2005, 25(2): 106-109 .
[3] Zhang Ying;Dai Mingan(Qingdao Institute of Marine Corrosion)Whang Qiu(Qingdao Marine University). AN ELECTROCHEMICAL EVALUATION OF STEEL CORROSION INDUCED BY TWO SULPHER-OXIDIZING BACTERIA[J]. 中国腐蚀与防护学报, 1994, 14(2): 168-174.
No Suggested Reading articles found!