Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2021, Vol. 41 Issue (4): 523-528    DOI: 10.11902/1005.4537.2020.104
Current Issue | Archive | Adv Search |
Effect of ClO2- on Pitting Initiation of S2205 Stainless Steel in Cl- Containing Medium
YANG Zhongkui, SHI Yanhua(), QIAO Zhongli, LIANG Ping, WANG Ling
School of Mechanical Engineering, Liaoning Petrochemical University, Fushun 113001, China
Download:  HTML  PDF(2146KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of ClO2- amount on the metastable pitting of S2205 stainless steel in Cl- containing medium was studied by means of slow potentiodynamic scan. The results show that the competitive adsorption of ClO2- and O2 hinders the formation and repairation of the passivation film, while the strong oxidation causes the partial dissolution of the passivation film, thereby its stability is reduced. Meanwhile, ClO2- competes with Cl- for adsorption, the greater the concentration, the higher the replacement rate, as a result, such competition may provide protectiveness for the passivation film to a certain extent. The competitive adsorption of ClO2- and Cl- can suppress the metastable pitting nucleation, at this time, the nucleation could mainly occur on inclusions and active sites on the metal surface, of which the later might be generated on the surface grooves with a certain critical depth. Due to the decrease in the stability of the passivation film, as the concentration of ClO2- increases, the number of metastable pitting nucleation increases slightly, and the growth rate of metastable pitting has little relationship with the concentration of ClO2-. After the addition of ClO2-, Cl- induced metastable pitting nucleation was inhibited, Em increases rapidly, then its change with the concentration is not obvious, and the stability of the passivation film decreases, caused Eb decreases rapidly, it slowly decreases with the increasing concentration of ClO2-, then the metastable state of pitting is more likely to be transformed into the stable stage. The increase in potential could facilitate the dissolution of inclusions on the metal surface, inhibiting the metastable pitting nucleation, while increasing the Cl- migration rate and thus promoting the growth of metastable pitting.

Key words:  S2205 stainless steel      ClO2-      metastable pitting      nucleation      growth     
Received:  19 June 2020     
ZTFLH:  TG172.5  
Fund: Research Project of Liaoning Provincial Department of Education(L2013154)
Corresponding Authors:  SHI Yanhua     E-mail:  shiyanhua_2010@163.com
About author:  SHI Yanhua, E-mail: shiyanhua_2010@163.com

Cite this article: 

YANG Zhongkui, SHI Yanhua, QIAO Zhongli, LIANG Ping, WANG Ling. Effect of ClO2- on Pitting Initiation of S2205 Stainless Steel in Cl- Containing Medium. Journal of Chinese Society for Corrosion and protection, 2021, 41(4): 523-528.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2020.104     OR     https://www.jcscp.org/EN/Y2021/V41/I4/523

Fig.1  Microscopic images of inclusion (a) and corrosion pit metallographic structure (b) of the failed pipe
Fig.2  Slow moving potential polarization curves of S2205 stainless steel in NaCl solutions with different concentrations of ClO2-
Fig.3  Variations of the nucleus amount and growth rate of metastable pittings with ClO2- concentration
Fig.4  Em and Eb as a function of ClO2-concentration
Fig.5  Variations of the number of metastable pitting nuclei with ClO2- concentration in different potential intervals
Fig.6  Growth rates of metastable pittings at different ClO2- concentrations in different potential intervals
1 Wang W. Composition and structure of duplex stainless steel passivation film [J]. Plant Mainten. Eng., 2018, (22): 161
王巍. 双相不锈钢钝化膜组成和结构 [J]. 设备管理与维修, 2018, (22): 161
2 Wang Y Q, Li N, Lin S H. Overview of stainless steel pitting corrosion research [J]. Corros. Sci. Prot. Technol., 2015, 27: 387
王永强, 李娜, 林苏华. 不锈钢点蚀研究概述 [J]. 腐蚀科学与防护技术, 2015, 27: 387
3 Fan Q Q, Hua L. Influencing factors of corrosion behavior of 2205 duplex stainless steel [J]. Corros. Sci. Prot. Technol., 2014, 26: 178
范强强, 华丽. 2205双相不锈钢腐蚀行为的影响因素 [J]. 腐蚀科学与防护技术, 2014, 26: 178
4 Xu J L, Deng B, Sun T, et al. Evaluation of the susceptibility to intergranular attack of 2205 duplex stainless steel by DL-EPR method [J]. Acta Metall. Sin., 2010, 46: 380
徐菊良, 邓博, 孙涛等. DL-EPR法评价2205双相不锈钢晶间腐蚀敏感性 [J]. 金属学报, 2010, 46: 380
5 Feng M, Gong M, Zhang Y, et al. Effect of temperature on cathodic reaction of 2205 duplex stainless steel corrosion in brine [J]. Corros. Prot., 2011, 32: 691
冯敏, 龚敏, 张豫等. 温度对2205双相不锈钢在卤水中腐蚀阴极反应的影响 [J]. 腐蚀与防护, 2011, 32: 691
6 Xing S S, Qi H Y, Zheng C B. Effect of solution treatment on microstructure and passivation film properties of 2205 duplex stainless steel [J]. Heat Treat. Met., 2020, 45(3): 146
邢珊珊, 戚浩宇, 郑传波. 固溶处理对2205双相不锈钢组织及钝化膜特性的影响 [J]. 金属热处理, 2020, 45(3): 146
7 Huang G Q. Corrosion of stainless steels in tidal zone-exposure test for 16 years [J]. J. Chin. Soc. Corros. Prot., 2002, 22: 330
黄桂桥. 不锈钢海水潮汐区16年腐蚀行为 [J]. 中国腐蚀与防护学报, 2002, 22: 330
8 Deng Y S, Huang G Q. Corrosion behavior of cast stainless steels in seawater [J]. Equip. Environ. Eng., 2005, 2(2): 76
邓永生, 黄桂桥. 海水环境中铸造不锈钢的腐蚀行为 [J]. 装备环境工程, 2005, 2(2): 76
9 Wang B, Du N, Zhang H, et al. Accelerating effect of pitting corrosion products on metastable pitting initiation and the stable pitting growth of 304 stainless steel [J]. J. Chin. Soc. Corros. Prot., 2019, 39: 338
王标, 杜楠, 张浩等. 304不锈钢点蚀产物对亚稳态点蚀萌生和稳态蚀孔生长的加速作用 [J]. 中国腐蚀与防护学报, 2019, 39: 338
10 Shi L, Zheng Z J, Gao Y. Mechanism and research methods of pitting corrosion of stainless steels [J]. Mater. Rev., 2015, 29(23): 79
石林, 郑志军, 高岩. 不锈钢的点蚀机理及研究方法 [J]. 材料导报, 2015, 29(23): 79
11 Zhang S Q, Du N, Wang M F, et al. Effect of cathode area on stable pitting growth rate of 304 stainless steel in 3.5%NaCl solution [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 551
张思齐, 杜楠, 王梅丰等. 阴极面积对3.5%NaCl溶液中304不锈钢稳态点蚀生长速率的影响 [J]. 中国腐蚀与防护学报, 2018, 38: 551
12 Garfias-Mesias L F, Sykes J M. Metastable pitting in 25 Cr duplex stainless steel [J]. Corros. Sci., 1999, 41: 959
13 Tobler W J, Virtanen S. Effect of Mo species on metastable pitting of Fe18Cr alloys—A current transient analysis [J]. Corros. Sci., 2006, 48: 1585
14 Zuo Y, Fu S. Effect of surface roughness on metastable pitting of amorphous Ni alloy [J]. J. Univ. Sci. Technol. Beijing, 1996, 18(S2): 11
左禹, 符适. 表面粗糙度对非晶态合金亚稳态小孔形核和生长的影响 [J]. 北京科技大学学报, 1996, 18(S2): 11
15 Zuo Y. Current fluctuations during pit initiation on NiCrFeSiB amorphous alloys [J]. J. Chin. Soc. Corros. Prot., 1995, 15: 28
左禹. 非晶态NiCrFeSiB合金蚀孔萌生期间的电流波动 [J]. 中国腐蚀与防护学报, 1995, 15: 28
16 Tang Y M, Lin B, Zhao X H, et al. Effect of surface roughness on early stage of pitting corrosion of 316L SS [J]. Corros. Sci. Prot. Technol., 2014, 26: 505
唐聿明, 林冰, 赵旭辉等. 粗糙度在316L不锈钢小孔初期生长过程中的作用 [J]. 腐蚀科学与防护技术, 2014, 26: 505
17 Shi H Y, Zuo Y. Effect of tungstate ions on nucleation and growth of metastable- and stable-pitting of 304 stainless steel in NaCl solution [J]. Corros. Sci. Prot. Technol., 2018, 30: 167
石慧英, 左禹. 钨酸根离子对304不锈钢亚稳态与稳态孔蚀形核与生长的影响 [J]. 腐蚀科学与防护技术, 2018, 30: 167
18 Shi H Y, Tang Y M, Zuo Y. Effects of PO43- on pitting nucleation of 304 stainless steel in chloride solutions [J]. J. Chin. Soc. Corros. Prot., 2013, 33: 36
石慧英, 唐聿明, 左禹. PO43-对304不锈钢在氯离子水溶液中小孔腐蚀形核过程的影响 [J]. 中国腐蚀与防护学报, 2013, 33: 36
19 Lensch O, Enders B, Knecht J, et al. Examination of the metastable and stable pitting corrosion of aluminum modified with carbon by ion beam techniques [J]. Nucl. Inst. Methods Phys. Res., 2001, 175-177B: 683
20 Kairy S K, Rometsch P A, Davies C H J, et al. The influence of copper additions and aging on the microstructure and metastable pitting of Al-Mg-Si alloys [J]. Corrosion, 2015, 71: 1304
21 Kim Y, Buchheit R G. A characterization of the inhibiting effect of Cu on metastable pitting in dilute Al-Cu solid solution alloys [J]. Electrochim. Acta, 2007, 52: 2437
22 Wang H, Xie J, Yan K P, et al. The nucleation and growth of metastable pitting on pure iron [J]. Corros. Sci., 2009, 51: 181
23 Zhang B, Ma X L. TEM study on the pitting initiation [J]. Mater. China, 2018, 37: 866
张波, 马秀良. 点蚀形核机制的透射电子显微学研究 [J]. 中国材料进展, 2018, 37: 866
24 Li D G, Chen D R, Feng Y R, et al. Investigation on the composition and semi-conductive property of the passive film on 22Cr duplex stainless steel [J]. Acta Chim. Sin., 2008, 66: 2329
李党国, 陈大融, 冯耀荣等. 22Cr双相不锈钢钝化膜组成及其半导体性能研究 [J]. 化学学报, 2008, 66: 2329
25 Chen H L, Tian Y M, Guo H, et al. Effect of sodium hypochlorite on corrosion behavior of ductile cast iron pipe in reclaimed water [J]. Corros. Sci. Prot. Technol., 2017, 29: 41
陈灏琳, 田一梅, 郭浩等. NaClO对再生水球墨铸铁管道腐蚀行为的影响 [J]. 腐蚀科学与防护技术, 2017, 29: 41
26 Zhang C Y, Chen X Q, Chen D B, et al. Research of pitting susceptibility in low carbon steels and mechanism of pitting initiation [J]. J. Chin. Soc. Corros. Prot., 2001, 21: 265
张春亚, 陈学群, 陈德斌等. 不同低碳钢的点蚀诱发敏感性及诱发机理研究 [J]. 中国腐蚀与防护学报, 2001, 21: 265
[1] LIU Xinyi, ZHAO Yazhou, ZHANG Huan, CHEN Li. Effect of Chloride Concentration in a Simulated Concrete Pore Solution on Metastable Pitting of 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2021, 41(2): 195-201.
[2] MING Nanxi, WANG Qishan, HE Chuan, ZHENG Ping, CHEN Xu. Effect of Temperature on Corrosion Behavior of X70 Steel in an Artificial CO2-containing Formation Water[J]. 中国腐蚀与防护学报, 2021, 41(2): 233-240.
[3] BAI Haitao, YANG Min, DONG Xiaowei, MA Yun, WANG Rui. Research Progress on CO2 Corrosion Product Scales of Carbon Steels[J]. 中国腐蚀与防护学报, 2020, 40(4): 295-301.
[4] CHEN Xu, LI Shuaibing, ZHENG Zhongshuo, XIAO Jibo, MING Nanxi, HE Chuan. Microbial Corrosion Behavior of X70 Pipeline Steel in an Artificial Solution for Simulation of Soil Corrosivityat Daqing Area[J]. 中国腐蚀与防护学报, 2020, 40(2): 175-181.
[5] WANG Biao,DU Nan,ZHANG Hao,WANG Shuaixing,ZHAO Qing. Accelerating Effect of Pitting Corrosion Products on Metastable Pitting Initiation and the Stable Pitting Growth of 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(4): 338-344.
[6] Keqian ZHANG,Shilin HU,Zhanmei TANG,Pingzhu ZHANG. Review on Stress Corrosion Crack Propagation Behavior of Cold Worked Nuclear Structural Materials in High Temperature and High Pressure Water[J]. 中国腐蚀与防护学报, 2018, 38(6): 517-522.
[7] Ruolin ZHU, Litao ZHANG, Jianqiu WANG, Zhiming ZHANG, En-Hou HAN. Stress Corrosion Crack Propagation Behavior of Elbow Pipe of Nuclear Grade 316LN Stainless Steel in High Temperature High Pressure Water[J]. 中国腐蚀与防护学报, 2018, 38(1): 54-61.
[8] Naiqiang ZHANG,Guoqiang YUE,Fabin LV,Qi CAO,Mengyuan LI,Hong XU. Crack Growth Rate of Stress Corrosion Cracking of Inconel 625 in High Temperature Steam[J]. 中国腐蚀与防护学报, 2017, 37(1): 9-15.
[9] Boqiang SONG,Xu CHEN,Guiyang MA,Rui LIU. Effect of SRB on Corrosion Behavior of X70 Pipeline Steel in Near-neutral pH Solution[J]. 中国腐蚀与防护学报, 2016, 36(3): 212-218.
[10] Ruolin ZHU,Zhiming ZHANG,Jianqiu WANG,En-Hou HAN. Review on SCC Crack Growth Behavior of Dissimilar Metal Welds for Nuclear Power Reactors[J]. 中国腐蚀与防护学报, 2015, 35(3): 189-198.
[11] CHEN Binkai,CHEN Qingshe,ZHONG Haifeng,HAO Xiaodong,JIANG Sheming,ZHANG Qifu. Microstructure and Growth Mechanism of Inhibition Layer in Galvanized Coating on 440 MPa High Strength Steel[J]. 中国腐蚀与防护学报, 2013, 33(3): 188-192.
[12] SHI Huiying,TANG Yumiung,ZUO Yu. Effects of PO43- on Pitting Nucleation of 304 Stainless Steel in Chloride Solutions[J]. 中国腐蚀与防护学报, 2013, 33(1): 36-40.
[13] HUA Li, GUO Xingpeng, YANG Jiakuan. ELECTROCHEMICAL CORROSION BEHAVIOR AND DENDRITE GROWTH OF Sn-0.7Cu SOLDER ON FR-4 PRINTED CIRCUIT BOARD PLATED WITH Cu[J]. 中国腐蚀与防护学报, 2010, 30(6): 469-474.
[14] . ELECTROCHEMICAL CHARACTERISTICS OF PHOSPHATING ACCELERATED BY RARE EARTH NITRATE ON ALUMINUM ALLOY[J]. 中国腐蚀与防护学报, 2009, 29(1): 59-63.
[15] Jian Peng Mao; Yuming Tang; Yu Zuo. The Electrochemical Characteristics of Pitting of X70 Pipeline Steel[J]. 中国腐蚀与防护学报, 2006, 26(2): 80-84 .
No Suggested Reading articles found!