Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2021, Vol. 41 Issue (3): 346-352    DOI: 10.11902/1005.4537.2020.050
Current Issue | Archive | Adv Search |
Research on Boundary Condition Inversion Method for Numerical Simulation of Regional Cathodic Protection and Its Application
ZHUANG Dawei1, DU Yanxia1(), CHEN Taotao2, LU Danping1
1.Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
2.Beijing Gas Group Company Limited, Beijing 100035, China
Download:  HTML  PDF(2508KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Numerical simulation could provide important information to optimize the regional cathodic protection system. However, the accuracy of numerical simulation is affected by several factors, especially by the boundary conditions, reflecting the coating condition, polarization characteristics of buried structures in the soil environment. The coating conditions of pipelines sometimes are quite different. It is difficult to determine the boundary conditions of buried pipelines accurately for in service stations. In this paper, the boundary conditions required for numerical simulation are acquired by inversion calculation, then based on the acquired boundary conditions, the optimal design for distribution of anode ground beds was carried out, therewith an optimized regional cathodic protection scheme was determined. Following the determined scheme, the construction of a regional cathodic protection system was realized, hence the calculation results were compared with the real field test results in the end. The margin of errors for the above two sets of results is under 10%, that verified reasonably the accuracy of the proposed method.

Key words:  regional cathodic protection      numerical simulation      boundary condition      inversion calculation      optimization calculation     
Received:  16 March 2020     
ZTFLH:  TE988  
Fund: National Key R&D Program of China(2016YFC0802103)
Corresponding Authors:  DU Yanxia     E-mail:  duyanxia@ustb.edu.cn
About author:  DU Yanxia, E-mail: duyanxia@ustb.edu.cn

Cite this article: 

ZHUANG Dawei, DU Yanxia, CHEN Taotao, LU Danping. Research on Boundary Condition Inversion Method for Numerical Simulation of Regional Cathodic Protection and Its Application. Journal of Chinese Society for Corrosion and protection, 2021, 41(3): 346-352.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2020.050     OR     https://www.jcscp.org/EN/Y2021/V41/I3/346

Fig.1  Three-dimensional models of mesh generation (a) and buried pipelines in station (b)
Fig.2  Gas distribution pipeline networks and position of temporary anode bed
Number1# Anode bed2# Anode bed3# Anode bed
VselfvsCSE / VVonvs CSE / VVoffvs CSE / VΔV / mVVonvsCSE / VVoffvsCSE / VΔV / mVVonvsCSE / VVoffvsCSE / VΔV / mV
Area 1A1-0.5-1.46-0.62-120-1.74-0.74-240-1.14-0.68-180
A2-0.49-0.86-0.63-140-1.25-0.75-260-1.03-0.7-210
A3-0.47-0.97-0.62-150-1.37-0.74-270---------
A4-0.47-1.07-0.63-160-1.47-0.75-280---------
A5-0.47-1.05-0.61-140-1.44-0.73-260---------
A6-0.5-1.1-0.63-130-1.45-0.74-240---------
A7-0.48-0.96-0.6-120-1.36-0.7-220---------
A8-0.5-1.01-0.65-150-1.47-0.75-250-1.04-0.7-200
Area 2B1-0.54-0.74-0.59-50-1.57-0.72-180-0.82-0.65-110
B2-0.44-0.64-0.56-120-1.11-0.69-250-0.78-0.63-190
B3-0.47---------------------------
B4-0.55----------1.11-0.75-200-0.8-0.66-110
B5-0.47---------------------------
B6-0.55-0.75-0.66-110-1.19-0.8-250-0.88-0.71-160
B7-0.49---------------------------
B8-0.47----------1.3-0.79-320-0.82-0.63-160
B9-0.54---------------------------
B10-0.44-0.65-0.52-80-1.17-0.67-230-0.88-0.64-200
B11-0.52---------------------------
B12-0.52-0.7-0.57-50-1.24-0.68-160-0.88-0.64-120
B13-0.46---------------------------
B14-0.46-0.75-0.59-130-1.14-0.68-220-1.11-0.69-230
B15-0.48---------------------------
B16-0.47-0.8-0.59-120-1.2-0.7-230-1.25-0.71-240
B17-0.47-0.84-0.59-120-1.23-0.66-190-1.57-0.7-230
B18-0.49-------------------1.64-0.72-230
B19-0.48-0.75-0.57-90----------3.32-0.84-360
B20-0.42-0.69-0.54-120----------1.39-0.63---
B21-0.48, (-0.42~-0.52)-------------------1.29------
Area 3C1----------------------3.96-0.87-870
Table 1  Potential drift of pipelines and feedback data
Fig.3  Comparison of measured off-potential and inversion results of 1# (a) and 3# (b) anode bed
Test point

Area2

B15~B17

Area1& Area 2

A7~B17

Area2

B17~B21

Area1

A1~A2

Area1

A8~B1

Area1

B2~B6

Other
Coating surface resistivity / Ω·m2200020002000100000500001000003000
Coating damage rate1.86×10-42.48×10-43.10×10-41.66×10-62.48×10-68.28×10-78.27×10-5
Table 2  Inversion results of the pipelines coating characteristic
Fig.4  Inversion results of polarization curves for the pipelines coating
Fig.5  Position distribution of anode ground bed
Test pointMeasured off-potential V (CSE)Calculated off-potential V (CSE)Error
1#-1010-995-1.49%
2#-1000-990-1.00%
3#-1040-985-5.29%
4#-1150-11600.87%
5#-1080-10900.93%
6#-940-920-2.13%
7#-980-10305.10%
8#-950-9702.11%
9#-960-9802.08%
10#-880-9659.66%
11#-930-9805.38%
12#-970-109012.37%
13#-970-10659.79%
14#-940-10309.57%
15#-880-8800.00%
16#-890-880-1.12%
17#-900-880-2.22%
18#-960-875-8.85%
19#-920-875-4.89%
Table 3  Error between calculated off-potential and measured potential
Fig.6  Position distribution of test points
Fig.7  Cloud map of potential distribution for anode bed
1 Hu Y B, Zhang F, Zhao J. Regional cathodic protection design of a natural gas distribution station [J]. Corros. Sci. Technol., 2017, 16: 235
2 Deng W L, Deng Y G, Ren J, et al. Application of numerical simulation in regional cathodic protection design of an oil and gas treatment plant [J]. Mater. Prot., 2019, 52(10): 148
邓伟林, 邓勇刚, 任建等. 数值模拟在某油气处理厂区域阴保设计中的运用 [J]. 材料保护, 2019, 52(10): 148
3 Sun X G, Wang Z F. Regional cathodic protection of Dongying crude oil depot [J]. Oil Gas Storage Trans., 1992, 11(3): 57
孙希功, 王芷芳. 东营原油库区域性阴极保护 [J]. 油气储运, 1992, 11(3): 57
4 Wang F, Wang Z F, Hu S B. Problem and countermeasure of the regional cathodic protection facility in natural gas stations [J]. Oil-Gas Field Surf. Eng., 2019, 38(S1): 135
王飞, 王志方, 胡生宝. 天然气站场区域阴极保护系统存在的问题及措施 [J]. 油气田地面工程, 2019, 38(S1): 135
5 Du Y X, Dong L, Wang L Y, et al. Key technologies in regional cathodic protection in oil & gas stations [A]. Corrosion 2014 [C]. San Antonio, Texas, 2014: 3957
6 Shukla P K, Nordquist A, Kulczyk J. Cathodic protection design considerations in congested area facilities [A]. Corrosion 2018 [C]. Phoenix, Arizona, 2018: 10900
7 Kirkpatrick E L. Conflict between copper grounding and CP in oil & gas production facilities [J]. Mater. Perform., 2002, 41: 22
8 Liu C, Shankar A, Orazem M E, et al. Numerical simulations for cathodic protection of pipelines [A]. Orazem M E ed. Underground Pipeline Corrosion [M]. Woodhead Publishing, 2014: 85
9 Dong L, Cui W, Yang Y, et al. Compatibility analysis of regional CP system and electrical grounding system in Oil & Gas Stations [A]. Corrosion 2017 [C]. New Orleans, Louisiana, 2017: 9254
10 Cui G, Li Z L, Wei X, et al. Cathodic protection design of station area based on boundary element method [J]. J. China Univ. Pet., 2014, 38(6): 161
崔淦, 李自力, 卫续等. 基于边界元法的站场区域阴极保护设计 [J]. 中国石油大学学报 (自然科学版), 2014, 38(6): 161
11 Al-Hazzaa M I, Al-Abdullatif M O. Effect of soil conductivity on the design of cathodic protection systems used in the prevention of pipeline corrosion [J]. J. King Saud Univ.-Eng. Sci., 2010, 22: 111
12 Ni M. Numerical simulation research on cathodic protection parameters of long distance pipeline [D]. Xi'an: Xi'an Shiyou University, 2019
倪梦. 长输管道区域阴极保护参数的数值模拟研究 [D]. 西安: 西安石油大学, 2019
13 Wang Y T. Research on regional cathodic protection data management platform of long distance pipeline based on big data [D]. Xi'an: Xi'an Shiyou University, 2019
王玉婷. 基于大数据的长输管道区域阴极保护数据管理平台研究 [D]. 西安: 西安石油大学, 2019
14 Dong L, Lu M X, Du Y X. Study on the boundary conditions of coated steel in numerical simulation of cathodic protection systems [A]. Corrosion 2011 [C]. Houston, Texas, 2011: 11318
15 Lu D P, Du Y X, Tang D Z, et al. Research status and existing problems of regional cathodic protection technology in oil and gas transmission stations [J]. Corros. Sci. Prot. Technol., 2018, 30: 84
鲁丹平, 杜艳霞, 唐德志等. 油气输送站场区域阴极保护研究现状及存在问题 [J]. 腐蚀科学与防护技术, 2018, 30: 84
16 Du Y X, Jiang Z T, Lu M X, et al. Study on regional cathodic protection for well casings group [A]. Corrosion 2013 [C]. Orlando, Florida, 2013: 2446
17 Santiago J A F, Telles J C F. A solution technique for cathodic protection with dynamic boundary conditions by the boundary element method [J]. Adv. Eng. Softw., 1999, 30: 663
18 Brasil S L D C, Telles J C F, Miranda L R M. Simulation of coating failures on cathodically protected pipelines experimental and numerical results [J]. Corrosion, 2000, 56: 1180
19 Nisancioglu K, Gartland P O, Dahl T, et al. Role of surface structure and flow rate on the polarization of cathodically protected steel in seawater [J]. Corrosion, 1987, 43: 710
20 Carson S L, Orazem M E. Time-dependent polarization behaviour of pipeline grade steel in low ionic strength environments [J]. J. Appl. Electrochem., 1999, 29: 707
21 Du Y X, Lu M X, Dong L, et al. Study on the cathodic protection scheme in oil and gas transmission station based on numerical simulation [A]. Corrosion 2011 [C]. Houston, Texas, 2011: 11057
22 Du Y X, Lu M X, Sun J M. Problems and solutions concerning cathodic protection in oil and gas transmission station [J]. Gas Heat, 2011, 31(11): 43
杜艳霞, 路民旭, 孙健民. 油气输送厂站阴极保护相关问题及解决方案 [J]. 煤气与热力, 2011, 31(11): 43
23 Zhang Y Z, Wang Y M, Liu L L, et al. Applied development of numerical simulation technology in pipeline cathodic protection [J]. Corros. Prot., 2011, 32: 969
张玉志, 王玉梅, 刘玲莉等. 数值仿真技术在长输管道阴极保护中的应用进展 [J]. 腐蚀与防护, 2011, 32: 969
24 Liu Y. Thermal boundary condition inversion of strip controlled cooling [D]. Chongqing: Chongqing University, 2017
刘瑶. 带钢控制冷却热边界条件反演 [D]. 重庆: 重庆大学, 2017
25 Wang T Z. Research on heat transfer coefficient inversion method based on the third boundary condition [D]. Harbin: Harbin industrial of Technology, 2018
王天资. 基于第三类边界条件的传热系数反演方法研究 [D]. 哈尔滨: 哈尔滨工业大学, 2018
26 Rodopoulos D C, Gortsas T V, Tsinopoulos S V, et al. ACA/BEM for solving large-scale cathodic protection problems [J]. Eng. Anal. Bound. Elem., 2019, 106: 139
27 Zhang F, Chen H Y, Li G D, et al. The application of numerical simulation in cathodic protection of pipelines and stations [J]. Oil Gas Storage Trans., 2011, 30: 208
张丰, 陈洪源, 李国栋等. 数值模拟在管道和站场阴极保护中的应用 [J]. 油气储运, 2011, 30: 208
28 Kim Y S, Kim J, Choi D, et al. Optimizing the sacrificial anode cathodic protection of the rail canal structure in seawater using the boundary element method [J]. Eng. Anal. Bound. Elem., 2017, 77: 36
29 Metwally I A, Al-Mandhari H M, Gastli A, et al. Factors affecting cathodic-protection interference [J]. Eng. Anal. Bound. Elem., 2007, 31: 485
30 Kim Y S, Lee S K, Chung H J, et al. Influence of a simulated deep sea condition on the cathodic protection and electric field of an underwater vehicle [J]. Ocean Eng., 2018, 148: 223
[1] Zhenhua WANG, Yang BAI, Xiao MA, Shaohua XING. Numerical Simulation of Galvanic Corrosion for Couple of Ti-alloy with Cu-alloy in Seawaters[J]. 中国腐蚀与防护学报, 2018, 38(4): 403-408.
[2] Jie KOU, Xince ZHANG, Gan CUI, Baoan YANG. Research Progress on Cathodic Protection Potential Distribution of Tank Bottom Plate[J]. 中国腐蚀与防护学报, 2017, 37(4): 305-314.
[3] Mumeng WEI,Bojun YANG,Yangyang LIU,Xiaoping WANG,Jinghua YAO,Lingqing GAO. Research Progress and Prospect on Erosion-corrosion of Cu-Ni Alloy Pipe in Seawater[J]. 中国腐蚀与防护学报, 2016, 36(6): 513-521.
[4] CHENG Xudong, SUN Lianfang, CAO Zhifeng, ZHU Xingji, ZHAO Lixin. Numerical Simulation of Chloride Ion Induced Corrosion of Reinforced Concrete Structures in Marine Environment[J]. 中国腐蚀与防护学报, 2015, 35(2): 144-150.
[5] ZHOU Tingting, YUAN Chengqing, CAO Pan, WANG Xuejun, DONG Conglin. Numerical Simulation Analysis of Fluid Erosion Corrosion of Injection Nozzle for Diesel Engine[J]. 中国腐蚀与防护学报, 2014, 34(6): 574-580.
[6] LI Qiang, TANG Xiao, LI Yan. Progress in Research Methods for Erosion-corrosion[J]. 中国腐蚀与防护学报, 2014, 34(5): 399-409.
[7] . Numerical Calculation of Cathodic Protection Potential Distribution[J]. 中国腐蚀与防护学报, 2008, 28(1): 53-58 .
[8] ;. Numerical modeling of Cathodic Protection Potential Distribution on the Exterior of Tank Bottom[J]. 中国腐蚀与防护学报, 2006, 26(6): 346-350 .
No Suggested Reading articles found!