Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2018, Vol. 38 Issue (4): 333-342    DOI: 10.11902/1005.4537.2017.087
Current Issue | Archive | Adv Search |
Investigation of Microorganisms in Corrosion Product Scales on Q235 Carbon Steel Exposed to Tidal- and Full Immersion Zone at Qindao- and Sanya-sea Waters
Yan SUN, Jiajia WU, Dun ZHANG(), Shiqiang CHEN
Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
Download:  HTML  PDF(2353KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Q235 carbon steel samples were exposed to tidal- and full immersion-zone at two selected sea waters, namely Qingdao- and Sanya-sea waters for 90, 180 and 270 d months respectively. Then, of which the corrosion morphology, corrosion rate, and the composition of corrosion products were characterized, while the microorganisms in the rust scales were isolated, purified, and identified with the aid of the conventional plate isolation and 16S rDNA sequencing technologies. It was found that the corrosion rate of Q235 carbon steel varied with the location of the test samples and the corrosion rate of the test sample in the tidal zone was always higher than that in the immersion zone. There were variations in the composition of the inner- and outer-layer of corrosion products, and the outer consisted of Fe3O4, α-FeOOH, and γ-FeOOH, while Fe3O4 dominated in the inner layer. Furthermore, the composition of rust scales was independent on the sea waters. There was a complex microorganism community in the rust scales, which varied with the exposure sea waters and time, as well as the location of test samples. The community was comprised of sulphate-reducing bacteria, iron bacteria, and aerobic bacteria/facultative anaerobes. More species and a larger quantity of isolated bacteria were obtained for the corrosion scales formed in the immersion zone than those in the tidal zone at any exposure time, and it was more facile to detect sulphate-reducing bacteria for the corrosion scales formed in the immersion zone. Aerobic bacteria and facultative anaerobes covered diverse genera, and the dominant bacteria were Vibrio sp., Bacillus sp. and Pseudoalteromonas sp..

Key words:  marine corrosion      samples in natural seawater      microorganism isolation and identification      corrosion zone      space-time variation     
Received:  03 June 2017     
ZTFLH:  TG174.4  
Fund: Supported by National Basic Research Program of China (2014CB643304)

Cite this article: 

Yan SUN, Jiajia WU, Dun ZHANG, Shiqiang CHEN. Investigation of Microorganisms in Corrosion Product Scales on Q235 Carbon Steel Exposed to Tidal- and Full Immersion Zone at Qindao- and Sanya-sea Waters. Journal of Chinese Society for Corrosion and protection, 2018, 38(4): 333-342.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2017.087     OR     https://www.jcscp.org/EN/Y2018/V38/I4/333

Number Culture-medium name Composition Applications
1 Zobell 2216E medium Yeast extract 1 g, Peptone 5 g, FePO4 0.01 g, Agar powder 20 g,Aged seawater 1 L Separate Aerobe and facultative anaerobe
2 SRB medium KH2PO4 0.5 g, MgSO4 2 g, NaSO4 0.5 g, NH4Cl 1 g, CaCl2 0.1 g, Yeast Extract 1 g, Sodium lactate 4 ml, Aged seawater 1 L Separate SRB
3 Ammonium ferric citrate medium MgSO4 0.5 g, (NH4)2SO4 0.5 g, K2HPO4 0.5 g, CaCl2 0.2 g, NaNO3 0.5 g, FeC6H5O7NH4OH 10.0 g, Aged seawater 1 L, Adjust the pH to 6.8 Separate iron bacteria
Table 1  Name, composition and applications of used culture media
Fig.1  Surface morphologies of Q235 carbon steel samples immersed for 180 d in the tidal zone (a) and immersion zone (b) of Qingdao seawater
Fig.2  Surface morphologies of Q235 carbon steel samples immersed for 180 d in the tidal zone (a), and immersion zone (b) of Sanya seawater
Test site Corrosion zone Exposure time / d Average corrosion rate / mma-1
Qingdao Tidal zone 90 0.43
180 0.55
Immersion zone 90 0.21
180 0.28
Sanya Tidal zone 90 0.50
180 0.59
Immersion zone 90 0.20
180 0.23
Table 2  Average corrosion rates of Q235 carbon steel during immersion in seawater at Qingdao and Sanya for 90 and 180 d
Fig.3  XRD patterns of corrosion products formed on Q235 carbon steel after exposed to tidal (a) and immersion (b) zones of Qingdao seawater for 180 d
Fig.4  XRD patterns of corrosion products formed on Q235 carbon steel after exposed to tidal (a) and immersion (b) zones of Sanya for 180 d
Test site Exposure time Corrosion zone SRB
Qingdao 2014.04.28-2014.07.28 (90 d) Tidal zone ---
Immersion zone
2014.04.28-2014.10.28 (180 d) Tidal zone ---
Immersion zone
Sanya 2014.04.15-2014.07.15 (90 d) Tidal zone ---
Immersion zone
2014.04.15-2014.10.15 (180 d) Tidal zone ---
Immersion zone
2014.04.15-2015.01.15 (270 d) Tidal zone ---
Immersion zone
Table 3  SRB detected in the rust layer formed on Q235 carbon steel exposed to tidal and immersion zones of Qingdao and Sanya seawater for different time
Test site Corrosion zone Exposure time / d Iron bacteria species
Qingdao Immersion zone 90 Marinomonas communis, Vibrio hepatarius
Tidal zone 90 Pseudomonas sp.
Immersion zone 180 Bacillus megaterium
Tidal zone 180 ---
Sanya Immersion zone 90 Pseudoalteromonas viridis
Tidal zone 90 ---
Immersion zone 180 Vibrio alginolyticus
Tidal zone 180 ---
Immersion zone 270 Tenacibaculum litopenaei, Vibrio chagasii, Psychrobacter sp.
Tidal zone 270 Alteromonas macleodii, Arthrobacter nicotianae, Dokdonia sp., Vibrio sp., Shewanella fidelis, Thalassotalea sp.
Table 4  IOB detected in the rust layer formed on Q235 carbon steel exposed to tidal and immersion zones of Qingdao and Sanya seawater for different time
Aerobe and facultaticve anaerobe species Qingdao / d Sanya / d
Immersion zone Tidal zone Immersion zone Tidal zone
90 180 90 180 90 180 270 90 180 270
Vibrio sp. Vibrio alginolyticus
Vibrio parahaemolyticus
Vibrio sp.
Vibrio coralliilyticus
Vibrio fortis
Vibrio chagasii
Vibrio diabolicus
Vibrio communis
Vibrio ponticus
Vibrio neocaledonicus
Vibrio natriegens
Vibrio caribbeanicus
Vibrio harveyi
Vibrio brasiliensis
Pseudoalteromonas sp. Pseudoalteromonas sp.
Pseudoalteromonas phenolica
Pseudoalteromonas luteoviolacea
Pseudoalteromonas rubra
Pseudoalteromonas piscicida
Pseudoalteromonas flavipulchra
Bacillus sp. Bacillus algicola
Bacillus sp.
Bacillus pumilus
Bacillus anthracis
Bacillus aryabhattai
Bacillus cereus
Bacillus methylotrophicus
Bacillus aquimaris
Microbulbifer sp. Microbulbifer sp.
Microbulbifer agarilyticus
Alteromonas sp. Alteromonas sp.
Alteromonas macleodii
Photobacterium sp. Photobacterium sp.
Photobacterium rosenberg
Photobacterium lutimaris
Tenacibaculum sp. Tenacibaculum discolor
Tenacibaculum litoreum
Tenacibaculum mesophilum
Erythrobacter sp. Erythrobacter sp.
Erythrobacter aquimaris
Rhodobacteraceae
Flavobacteriaceae
Ruegeria atlantica
Alpha proteobacterium
Arthrobacter nicotianae
Enterobacter sp.
Phaeobacter caeruleus
Rhodobacter vinaykumaraii
Aquimarina latercula
Thalassomonas agarivorans
Acinetobacter sp.
Sulfitobacter delicatus
Psychrobacter adeliensis
Table 5  Aerobe and facultaticve anaerobe detected in the rust layer formed on Q235 carbon steel exposed to tidal and immersion zones of Qingdao and Sanya seawater for different time
[1] Beech I B, Sunner J.Biocorrosion: Towards understanding interactions between biofilms and metals[J]. Curr. Opin. Biotechnol., 2004, 15: 181
[2] Gu C X, Shang Y J, Fan C H, et al.Advances in microbial corrosion research in deep sea environment[J]. Mar. Technol., 2012, (3): 61(顾彩香, 尚燕杰, 范春华等. 深海环境微生物腐蚀研究的进展[J]. 航海技术, 2012, (3): 61)
[3] Forsyth R A.Microbial induced corrosion in ports and harbors worldwide [A]. 12th Triannual International Conference on Ports 2010[C]. Reston, VA, 2010: 932
[4] Li C Y, Huang Z G, Zhang L X, et al.Studies on the ecology of fouling organisms in lvshun harbor, Liaoning province, China[J]. Acta Ecol. Sin., 1982, 2: 61(李传燕, 黄宗国, 张良兴等. 旅顺港附着生物生态的研究[J]. 生态学报, 1982, 2: 61
[5] Ma S D, Wang K, Zhao J, et al.A preliminary study on the evolution of the main large - scale boufoulingcommunity in Qingdao harbor [A]. Proceedings of the China Marine Lakes Society 10th Member Congress 2012 Marine Corrosion and Boufouling Symposium Summary F[C]. Wenzhou, 2012: 58(马士德, 王科, 赵君等. 青岛港湾主要大型污损生物群落组成演化初步探讨 [A]. 第五届国际海洋与重防腐涂料及涂装技术研讨会暨2012年中国涂料工业协会防腐涂料分会[C]. 温州, 2012: 58)
[6] Xue J Z, Wang B Q, Zhuang H, et al.Community structure and diversity of fouling organisms in Yangshan port[J]. Sci. Technol. Rev., 2011, 29: 66(薛俊增, 王宝强, 庄骅等. 洋山港码头污损生物的群落结构和多样性研究[J]. 科技导报, 2011, 29: 66)
[7] Lin G M, Xiang P, Li B Q, et al.Species diversity and distribution of fouling organism in Xiamen harbor[J]. Trans. Oceanol. Limnol., 2010, (3): 65(林更铭, 项鹏, 李炳乾等. 厦门港污损生物物种多样性和分布特征[J]. 海洋湖沼通报, 2010, (3): 65)
[8] Yan S K, Huang Z G.Defaced biological community of pier pile for Daya bay[J]. Acta Oceanol. Sin., 1992, 14(3): 114(严颂凯, 黄宗国. 大亚湾码头桩柱的污损生物群落[J]. 海洋学报, 1992, 14(3): 114)
[9] Li H X, Yan Y, He W H, et al.An ecological study on fouling in the waters off the Bailong Peninsula in the Beibu gulf[J]. J. Trop. Oceanogr., 2010, 29(3): 108(李恒翔, 严岩, 何伟宏等. 北部湾白龙半岛邻近海域污损生物生态研究[J]. 热带海洋学报, 2010, 29(3): 108)
[10] Lin Y S, Ye D Z, Yao R M, et al.On the formation and succession of the marine microfouling organisms community in the Xiamen harbor[J]. Marine Sci. Bull., 1983, 2(3): 45(林燕顺, 叶德赞, 姚瑞梅等. 海洋微型附着生物的研究——厦门港微型附着生物群落的形成和演替(冬季)[J]. 海洋通报, 1983, 2(3): 45)
[11] Wu J Y, Xiao W L, Chai K, et al.The single effect of microbe on the corrosion behaviors of 45 steel in seawater of tropical ocean environment[J]. Acta Metall. Sin., 2010, 46: 118(吴进怡, 肖伟龙, 柴柯等. 热带海洋环境下海水中微生物对45钢腐蚀行为的单因素影响[J]. 金属学报, 2010, 46: 118)
[12] Yu Y, Wang J H, Fang S T, et al.Study on community structure and chemical constituents of fermentation broth in biofouling biofilms[J]. Marine Sci., 2014, 38(9): 27(于洋, 王建华, 方圣涛等. 海洋污损细菌群落结构及其发酵液中化学成分的研究[J]. 海洋科学, 2014, 38(9): 27)
[13] Zhu X R, Huang G Q, Lin L Y, et al.Research progress on the long period corrosion law of metallic materials in seawater[J]. J. Chin. Soc. Corros. Prot., 2005, 25: 142(朱相荣, 黄桂桥, 林乐耘等. 金属材料长周期海水腐蚀规律研究[J]. 中国腐蚀与防护学报, 2005, 25: 142)
[14] Xia L T, Huang G Q, Ding L P.Sea water corrsion properties of carbon steel and low alloy steel[J]. Res. Stud. Found. Equip., 2002, (4): 14(夏兰廷, 黄桂桥, 丁路平. 碳钢及低合金钢的海水腐蚀性能[J]. 铸造设备与工艺, 2002, (4): 14)
[15] Zou Y, Zheng Y Y, Wang Y H, et al.Cathodic electrochemical behaviors of mild steel in seawater[J]. Acta Metall. Sin., 2010, 46: 123(邹妍, 郑莹莹, 王燕华等. 低碳钢在海水中的阴极电化学行为[J]. 金属学报, 2010, 46: 123
[16] García K E, Morales A L, Barrero C A, et al.New contributions to the understanding of rust layer formation in steels exposed to a total immersion test[J]. Corros. Sci., 2006, 48: 2813
[17] Mcneil M B, Odom A L.Thermodynamic prediction of microbiologically influenced corrosion (MIC) by sulfate-reducing bacteria (SRB)[Z]. ASTM Special Technical Publication, 1994: 173
[18] Yu L, Duan J Z, Zhao W, et al.Characteristics of hydrogen evolution and oxidation catalyzed by Desulfovibrio caledoniensis biofilm on pyrolytic graphite electrode[J]. Electrochim. Acta, 2011, 56: 9041
[19] Yu L, Duan J Z, Du X Q, et al.Accelerated anaerobic corrosion of electroactive sulfate-reducing bacteria by electrochemical impedance spectroscopy and chronoamperometry[J]. Electrochem. Com-mun., 2013, 26: 101
[20] Ghiorse W C.Biology of iron- and manganese-depositing bacteria[J]. Annu. Rev. Microbiol., 1984, 38: 515
[21] Zakharova Y R, Prfenova V V.A method for cultivation of microorganisms oxidizing iron and manganese in bottom sediments of Lake Baikal[J]. Biol. Bull., 2007, 34: 236
[22] Starosvetsky D, Armon R, Yahalom J, et al.Pitting corrosion of carbon steel caused by iron bacteria[J]. Int. Biodeter. Biodegr., 2001, 47: 79
[23] Bao Z R, Yu X H, Li W, et al.Investigation on iron and manganese redox bacteria[J]. Microbiol. China, 1996, 23: 48(鲍志戎, 于湘晖, 李惟等. 铁、锰氧化还原细菌研究概况[J]. 微生物学通报, 1996, 23: 48)
[24] Ashassi-Sorkhabi H, Moradi-Haghighi M, Zarrini G, et al.Corrosion behavior of carbon steel in the presence of two novel iron-oxidizing bacteria isolated from sewage treatment plants[J]. Biodegradation, 2012, 23: 69
[25] Xu C M, Zhang Y H, Cheng G X, et al.Localized corrosion behavior of 316L stainless steel in the presence of sulfate-reducing and iron-oxidizing bacteria[J]. Mater. Sci. Eng., 2007, A443: 235
[26] Guo P, Yan M, Huang G Q, et al.A study on microbiologically influenced corrosion of a carbon steel in seawater[J]. Corros. Sci. Prot. Technol., 2006, 18: 410(郭鹏, 颜民, 黄桂桥等. 海水中碳钢内锈层中的微生物及其对腐蚀的影响[J]. 腐蚀科学与防护技术, 2006, 18: 410)
[27] Duan J Z, Zhang X J.Formation of rust layer influenced by microorganisms on steel immersed in seawater and its environmental effect[J]. Geol. J. China Univ., 2007, 13: 631(段继周, 张晓军. 海水中钢铁锈层的微生物成因及其环境效应[J]. 高校地质学报, 2007, 13: 631)
[28] Yang Y H, Xiao W L, Chai K, et al.Composition of bacteria in corrosion product of carbon steel with different carbon content immersed in seawater for different time[J]. J. Chin. Soc. Corros. Prot., 2011, 31: 294(杨雨辉, 肖伟龙, 柴柯等. 碳含量和浸泡时间对碳钢热带自然海水腐蚀产物中细菌组成的影响[J]. 中国腐蚀与防护学报, 2011, 31: 294)
[29] Luan X, Duan J Z, Chi Z M.Diversity of bacterial community on the surface of Q235 steel in temperate coastal marine waters[J]. Period. Ocean Univ. China, 2012, 42(Suppl.1): 107(栾鑫, 段继周, 池振明. 青岛近海碳钢锈层中细菌群落结构的多样性[J]. 中国海洋大学学报, 2012, 42(增刊1): 107
[30] Lv J F, Li J, Mo Z L, et al.Microorganism identification by 16S rDNA of concrete surface exposed to a tidal zone[J]. J. Harbin Eng. Univ., 2010, 31: 1386(吕建福, 李杰, 莫照兰等. 海洋潮差区混凝土表面微生物16S rDNA分子鉴定[J]. 哈尔滨工程大学学报, 2010, 31: 1386
[31] Lv J F, Ba H J.Splash zone concrete of marine concrete engineering by SEM and surface microorganism identification by 16S rRNA[J]. J. Wuhan Univ. Technol., 2009, 31(2): 28(吕建福, 巴恒静. 海洋浪溅区混凝土SEM及表面微生物16S rRNA鉴定[J]. 武汉理工大学学报, 2009, 31(2): 28)
[32] Wu J J, Zhang D, Wang P, et al.The influence of Desulfovibrio sp. and Pseudoalteromonas sp. on the corrosion of Q235 carbon steel in natural seawater[J]. Corros. Sci., 2016, 112: 552
[33] Li E E, Wu J J, Wang P, et al.D-phenylalanine inhibits biofilm development of a marine microbe, Pseudoalteromonas sp. SC2014[J]. FEMS Microbiol. Lett., 2016, 363: 198
[1] Bobo HUANG,Ping LIU,Xinkuan LIU,Pinxiu MEI,Xiaohong CHEN. Seawater Corrosion Behavior of New 70-1 Tin Brass Net in Waters off Dachen Island for Two Years[J]. 中国腐蚀与防护学报, 2018, 38(6): 594-600.
[2] HUANG Yanbin, SONG Gaowei, LIU Xuebin1 DING Huadong, YAN Yonggui, SHAO Xinhai. CORROSION PROTECTION OF Al-Zn-In-Mg-Ga-Mn ALUMINOUS SACRIFICIAL ANODE[J]. 中国腐蚀与防护学报, 2012, 32(1): 44-47.
[3] JIN Weixian LUO Yanan SONG Shizhe. MARINE EROSION-CORROSION DETECTIONS OF METAL MATERIALS[J]. 中国腐蚀与防护学报, 2008, 28(6期): 337-340.
[4] ;. In Field Electrochemical Detecting of Carbon Steel and Low Alloy Steel Samples at a marine corrosion test station[J]. 中国腐蚀与防护学报, 2007, 27(6): 321-325 .
No Suggested Reading articles found!