Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2014, Vol. 34 Issue (6): 574-580    DOI: 10.11902/1005.4537.2013.222
Current Issue | Archive | Adv Search |
Numerical Simulation Analysis of Fluid Erosion Corrosion of Injection Nozzle for Diesel Engine
ZHOU Tingting1,2, YUAN Chengqing1,2(), CAO Pan1,2, WANG Xuejun1,2, DONG Conglin1,2
1. Reliability Engineering Institute, School of Energy and Power Engineering, Wuhan University of Technology, Wuhan 430063, China
2. Key Laboratory of Marine Power Engineering & Technology, Ministry of Transport, Wuhan University of Technology, Wuhan 430063, China
Download:  HTML  PDF(3636KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

According to the basic principle of fluid flow, mathematical models of erosion corrosion and cavitations flow phase transition are established, the internal fluid flow of the nozzle is numerically simulated and analyzed by Fluent software. The results show that the serious damage position of material caused by the erosion locates on the corner of nozzle inlet. However, the position suffered from the maximum shear stress will be near to the nozzle exit when the "super cavitation" phenomenon exists. For a given level of corrosivity of fuel used, the erosion degree increases with the increase of the viscosity, fluid velocity and inlet pressure of the fuel, as well as the corner radius of the nozzle inlet, and decreases with the increase of the back pressure. For a given inlet pressure and a flow rate, the erosion corrosion would be reduced and the fuel atomization would be facilitated when the viscosity and back pressure of the fuel as well as the corner radius of the nozzle inlet were reduced.

Key words:  nozzle      erosion corrosion      cavitation      shear stress      numerical simulation     
ZTFLH:  TG172.2  

Cite this article: 

ZHOU Tingting, YUAN Chengqing, CAO Pan, WANG Xuejun, DONG Conglin. Numerical Simulation Analysis of Fluid Erosion Corrosion of Injection Nozzle for Diesel Engine. Journal of Chinese Society for Corrosion and protection, 2014, 34(6): 574-580.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2013.222     OR     https://www.jcscp.org/EN/Y2014/V34/I6/574

Fig.1  Two microtubes model
Fig.2  Nozzle grid model
Fig.3  Field calculation results for cavitation flow in axisymmetric single-hole nozzle hole: (a) pressure field, (b) contours of volume fraction, (c) wall shear stress
Fig.4  Cavitation flow under different viscosity: (a) ν=12 mm2/s, (b) ν=16 mm2/s, (c) ν=20 mm2/s
Fig.5  Maximum shear stress for fuels with different viscosities
Fig.6  Minimum shear stress for fuels with different viscosities
Fig.7  Cavitation flow distributions under different inlet pressures between heavy diesel (a~c) and diesel (d~f): (a, d) P1=8 MPa, (b, e) P1=10 MPa, (c, f) P1=12 MPa
Fig.8  Maximum shear stress under different inlet pressure between heavy diesel and diesel
Fig.9  Cavitation flow distributions under different back pressures between heavy diesel and diesel : (a) Pb=1MPa, (b) Pb=2MPa, (c) Pb=3MPa
Fig.10  Maximum shear stress under different back pressures between heavy diesel and diesel
Fig.11  Wall shear stress in the different position of nozzle hole
Fig.12  Cavitation flow distributions under different corner radius of the nozzle inlet: (a) R=0 µm, (b) R=20 µm, (c) R=40 µm
Fig.13  Maximum shear stress under different corner radius of the nozzle inlet
[1] Soteriou C, Andrews R, Smith M. Direct injection diesel sprays and the effect of cavitation and hydraulic flip on atomization[J]. SAE Trans., 1995, 104(3): 128-153
[2] Badock C, Wirth R, Fath A, et al. Investigation of cavitation in real size diesel injection nozzles[J]. Int. J. Heat Fluid Flow, 1999, 20(5): 538-544
[3] Ou G F. Simulation and erosion damage prediction research for multiphase flow in the hydrocracking air cooler bundle [D]. Hangzhou: Zhejiang University of Technology, 2004
(偶国富. 加氢裂化空冷器管束多相流模拟与冲蚀破坏预测研究[D]. 杭州: 浙江理工大学, 2004)
[4] Keating A, Nesic S. Numerical prediction of erosion corrosion in bends[J]. Corros. Sci., 2001, 57(7): 621-633
[5] Yong X Y, Zhang Z Q, Li D L, et al. Effect of near-wall hydrodynamic parameters on flow induced corrosion[J]. Corros. Sci. Prot. Technol., 2011, 23(3): 245-250
(雍兴跃, 张稚琴, 李栋梁等. 近壁处流体力学参数对流动腐蚀的影响[J]. 腐蚀科学与防护技术, 2011, 23(3): 245-250)
[6] Hong H F. Erosion-corrosion prediction and application software development for petrochemical multiphase flow pipeline system [D].Hangzhou: Zhejiang University of Technology, 2010
(洪惠芬. 石化多相流管道系统冲蚀预测及应用软件开发 [D]. 杭州: 浙江理工大学, 2010)
[7] Tao W Z. Numerical Heat Transfer[M]. Xi'an: Xi'an Jiaotong University Press, 2001: 206-226
(陶文锉. 数值传热学[M]. 西安: 西安交通大学出版社, 2001: 206-226)
[8] Li W, Xiong C K, Yan L. Analysis of the center moving path of aspherical bubble broken near a rigid wall[J]. J. Xihua Univ.(Nat. Sci.), 2006, 25(1): 52-53
(李伟, 熊朝坤, 严利. 刚性壁附近球状泡溃灭时泡心运动轨迹分析[J]. 西华大学学报 (自然科学版), 2006, 25(1): 52-53)
[9] Li J, Chen H S. Numerical simulation of micro bubble collapse near solid wall in fluent environment[J]. Tribology, 2008, 28(4): 311-315
(李疆, 陈皓生. Fluent环境中近壁面微空泡溃灭的仿真计算[J]. 摩擦学学报, 2008, 28(4): 311-315)
[10] Wang Z J, Chen J. Application of high-speed marine diesel engine burned heavy fuel oil[J]. Ship Ocean Eng., 2010, 39(2): 74-77
(王忠俊, 陈军. 中高速船用柴油机燃用重油的应用[J]. 船海工程, 2010, 39(2): 74-77)
[1] Aiguo JIANG,Jianwen ZHANG,Yanan XIN,Xiaoming CONG,Shi DONG. Numerical Simulation of Multiphase Erosion-corrosion of Tubes Bundles of Hydrocracking Air Cooler[J]. 中国腐蚀与防护学报, 2019, 39(2): 192-200.
[2] Zhenhua WANG, Yang BAI, Xiao MA, Shaohua XING. Numerical Simulation of Galvanic Corrosion for Couple of Ti-alloy with Cu-alloy in Seawaters[J]. 中国腐蚀与防护学报, 2018, 38(4): 403-408.
[3] Ying YANG, Cui LIN, Xiaobin ZHAO, Yifei ZHANG. Initial Stage Cavitation-corrosion of TA2 in Aqueous LiBr Solution[J]. 中国腐蚀与防护学报, 2017, 37(6): 540-546.
[4] Mumeng WEI,Bojun YANG,Yangyang LIU,Xiaoping WANG,Jinghua YAO,Lingqing GAO. Research Progress and Prospect on Erosion-corrosion of Cu-Ni Alloy Pipe in Seawater[J]. 中国腐蚀与防护学报, 2016, 36(6): 513-521.
[5] Cui LIN,Xiaobin ZHAO,Yifei ZHANG. Research Progress on Cavitation-corrosion ofMetallic Materials[J]. 中国腐蚀与防护学报, 2016, 36(1): 11-19.
[6] LIU Guiqun, ZHENG Yugui, JIANG Shengli, JING Junhang, DONG Weijuan, ZENG Hong, SI Pinxian. Stability and Erosion Corrosion Behavior of Corrosion Product Film of Q235 Carbon Steel and Cr5Mo Low Alloy Steel in Simulated Oil Refinery Media[J]. 中国腐蚀与防护学报, 2015, 35(2): 122-128.
[7] CHENG Xudong, SUN Lianfang, CAO Zhifeng, ZHU Xingji, ZHAO Lixin. Numerical Simulation of Chloride Ion Induced Corrosion of Reinforced Concrete Structures in Marine Environment[J]. 中国腐蚀与防护学报, 2015, 35(2): 144-150.
[8] LI Qiang, TANG Xiao, LI Yan. Progress in Research Methods for Erosion-corrosion[J]. 中国腐蚀与防护学报, 2014, 34(5): 399-409.
[9] ZOU Guanchi,SHEN Hanjie,LI Chenglin,YONG Xingyue. Establishment and Experimental Verification of Hydrodynamic Model for Impingement Corrosion Apparatus[J]. 中国腐蚀与防护学报, 2013, 33(1): 47-53.
[10] LIU Wenhong, LI Lei, LIU Yonggang, PAN Zhiyong, WANG Jianjun. MECHANISM OF EROSION-CORROSION WASHOUT FAILURE IN INTERNAL UPSET TRANSITION ZONE FOR DRILLPIPE BASED ON APPLICATION OF FLOW FIELD ANALYSIS[J]. 中国腐蚀与防护学报, 2011, 31(2): 160-164.
[11] YONG Xingyue, JI Jing, ZHANG Yaqin, LI Dongliang, ZHANG Zhanjia. QUANTITATIVE DETERMINATION OF MECHANICAL PROPERTIES FOR CAVITATION CORROSION SURFACE LAYER OF METAL BY MICRO/NANO MECHANICS MEASUREMENT TECHNOLOGY[J]. 中国腐蚀与防护学报, 2011, 31(1): 40-45.
[12] ;. Numerical modeling of Cathodic Protection Potential Distribution on the Exterior of Tank Bottom[J]. 中国腐蚀与防护学报, 2006, 26(6): 346-350 .
[13] ;. Cavitation Erosion Resistance of Spray Welding Nickel - Based Coatings[J]. 中国腐蚀与防护学报, 2006, 26(4): 197-201 .
[14] Yanchun Lou; Fangxin Zhao; Bo Yu; Jingcheng Wang; Yunlong Xiong. ELECTROCHEMICAL CORROSION AND CAVITATION EROSION BEHAVIOR OF Cr-Ni HYDRAULEC TURBINE MATERIAL[J]. 中国腐蚀与防护学报, 2005, 25(5): 312-316 .
[15] ;. CAVITATION EROSION BEHAVIORS AND MECHANISM OF 1Cr18Ni9TiSTAINLESS STEEL IN CHLORIDE SOLUTION[J]. 中国腐蚀与防护学报, 2005, 25(3): 157-162 .
No Suggested Reading articles found!