Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2013, Vol. 33 Issue (6): 515-520    DOI:
Current Issue | Archive | Adv Search |
Effect of 1.10-phenanthroline on Electroless Copper Plating Using Formaldehyde as Reductant
ZHAO Qing, ZHANG Chuanbo, WANG Shuaixing, DU Nan, ZHAO Lin, LI Yuanyuan
National Defense Key Disciplines Laboratory of Light Alloy Processing Science and Technology, Nanchang Hangkong University, Nanchang 330063, China
Download:  PDF(1327KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The effects of 1.10-phenanthroline on the utilization of formaldehyde and copper deposition behavior during electroless copper plating was studied by measurement of the formaldehyde in electrolyte in real-time,  polarization curves, electrochemical impedance spectroscopy (EIS) and scanning Kelvin probe (SKP). The morphology and microstructure of copper coating was characterized by SEM and XRD. The results showed that 1.10-phenanthroline can accelerate the oxidation of formaldehyde and increase the utilization of formaldehyde. When 1.10-phenanthroline was added to electrolyte, the resistance of electrolyte reduced, the current density at mixed potential increased, the surface potential of copper at electrolyte moved negatively, and then the copper deposition rate increased. The utilization of formaldehyde rose from 28% to 39%, the deposition rate increased by 50% when 1.5 mgL-1 1.10-phenanthroline was added to electrolyte. Besides, 1.10-phenanthroline is helpful to obtain uniform and fine copper coating, and increases the preferred orientation of Cu(111).
Key words:  1.10-phenanthroline      electroless copper plating      formaldehyde      electrochemical
impedance spectroscopy
      preferred orientation     
Received:  31 December 2012     
ZTFLH:  TQ153.14  

Cite this article: 

ZHAO Qing,ZHANG Chuanbo,WANG Shuaixing,DU Nan,ZHAO Lin,LI Yuanyuan. Effect of 1.10-phenanthroline on Electroless Copper Plating Using Formaldehyde as Reductant. Journal of Chinese Society for Corrosion and protection, 2013, 33(6): 515-520.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2013/V33/I6/515

[1] Garza M, Liu J, Magtoto N P, et al. Adhesion behavior of electroless deposited Cu on Pt/Ta silicate and Pt/SiO2 [J]. Appl. Surf. Sci., 2004, 222(1-4): 253-262
[2] Shacham-Diamand Y, Lopatin S. Integrated electroless metallization for ULSI [J]. Electrochim. Acta, 1999, 44(21/22): 3639-3649
[3] Zheng Y J, Zou W H, Yi D Q, et al. Technology and application of electroless copper plating [J]. Mater. Rev., 2005, 19(9): 76-79
(郑雅杰, 邹伟红, 易丹青等. 化学镀铜及其应用 [J]. 材料导报, 2005, 19(9): 76-79)
[4] Yang B, Yang F Z, Huang L, et al. Research of 2,2'-dipyridine on electroless copper plating using sodium hypophosphite as reductant [J]. Electrochemistry, 2007, 13(4): 425-430
(杨斌, 杨防祖, 黄凌等. 2,2'-联吡啶在化学镀铜中的作用研究 [J]. 电化学, 2007, 13(4): 425-430)
[5] Gan X P. Influences of K4Fe(CN)6 on electroless copper plating using hypophosphite as reducing agent [J]. J. Mater. Eng., 2009, (4): 39-44
(甘雪萍. 亚铁氰化钾对以次磷酸钠为还原剂化学镀铜的影响 [J]. 材料工程, 2009, (4): 39-44)
[6] Ma C X, Chen W X, Ma C, et al. The effect of 1.10-phenanthroline on electroless copper plating on the fabric [J]. J. Zhejiang Sci.-Tech. Univ., 2011, 28(5): 685-689
(马春霞, 陈文兴, 马春等. 1.10-菲啰啉对织物化学镀铜的影响 [J]. 浙江理工大学学报, 2011, 28(5): 685-689)
[7] Hanna F, Hamid Z A, Aal A A. Controlling factors affecting the stability and rate of electroless copper plating [J]. Mater. Lett., 2003, 58(1/2): 104-109
[8] Oita M, Matsuoka M, Iwakura C. Deposition rate and morphology of electroless copper film from solution containing 2,2'-dipyridl [J]. Electrochim. Acta, 1997, 42(9): 1435-1440
[9] Kulyk N, Cherevko S, Chung C H. Copper electroless plating in weakly alkaline electrolytes using DMAB as a reducing agent for metallization on polymer films [J]. Electrochim. Acta, 2012, 59: 179-185
[10] Lee C H, Kim A R, Koo H C, et al. Effect of 2-Mercapto-5-benzimidazolesulfonic acid in superconformal Cu electroless deposition [J]. J. Electrochem. Soc., 2009, 156(6): D207-D210
[11] Lin Y M, Yen S C. Effect of additive and chelating agent on electroless copper plating [J]. Appl. Surf. Sci., 2001, 178: 116-126
[12] Yang F Z, Yang B, Lu B B, et al. Electrochemical study on electroless copper plating using sodium hypophosphite as reductant [J]. Acta Phys.-Chim. Sin., 2006, 22(11): 1317-1320
(杨防祖, 杨斌, 陆彬彬等. 以次亚磷酸钠为还原剂化学镀铜的电化学研究 [J]. 物理化学学报, 2006, 22(11): 1317-1320)
[13] Gu X, Wang Z C, Lin C J. An electrochemical study of the effects of chelating agents and additives on electroless copper plating [J]. Electrochemistry, 2004, 10(1): 14-19
(谷新, 王周成, 林昌健. 络合剂和添加剂对化学镀铜影响的电化学研究 [J]. 电化学, 2004, 10(1): 14-19)
[14] Vandenmeerakker J E A M. On the mechanism of electroless plating. I. Oxidation of formaldehyde at different electrode surfaces [J]. J. Appl. Electrochem., 1981, 11(3): 387-393
[15] Vandenmeerakker J E A M. On the mechanism of electroless plating. II. One mechanism for different reductants [J]. J. Appl. Electrochem., 1981, 11(3): 395-400
[16] de Wit J H W. Local potential measurements with the SKPFM on aluminum alloy [J]. Electrochim. Acta, 2004, 49(17/18): 2841-2850
[17] Kondo K, Ishikawa J, Takenaka O, et al. Acceleration of electroless copper deposition in the presence of excess triethanolamine [J]. J. Electrochem. Soc., 1991, 138(12): 3629-3633
[18] Gu M, Xian X H. The preparation of copper electrodeposits with (110) lattice plane fully preferred orientation [J]. Acta Phys.-Chim. Sin., 2006, 22(3): 378-382
(辜敏, 鲜晓红. (110) 晶面全择优取向Cu镀层的制备及其条件优化 [J]. 物理化学学报, 2006, 22(3): 378-382)
[1] PAN Chengcheng,MA Chao,XIA Dahai. Estimation for Relevance of Atmospheric Corrosion Initiation with Surface Texture of Several Metallic Materials by Electron Backscattering Diffraction[J]. 中国腐蚀与防护学报, 2019, 39(6): 495-503.
[2] Zhihu WANG, Jumei ZHANG, Lijing BAI, Guojun ZHANG. Microstructure and Property of Composite Coatings on AZ91 Mg-alloy Prepared by Micro-arc Oxidation and Electroless Cu-layer[J]. 中国腐蚀与防护学报, 2018, 38(4): 391-396.
[3] CHEN Chen,GUO Hongbo,GONG Shengkai. Failure Analysis of Thermal Barrier Coating Being Subjected to Lateral Thermal Gradient on Surface[J]. 中国腐蚀与防护学报, 2013, 33(5): 400-406.
[4] Wang Jiajun(Tsinghua University)Sun Yufang(Central Non-Reffous Research Institute)Ye Ruizeng(University of Science and Technology Beijing). THE STRUCTURE AND HIGH TEMPERATURE STABILITY OF Ti-N FILM AS A DIFFUSION BARRIER[J]. 中国腐蚀与防护学报, 1994, 14(3): 247-251.
No Suggested Reading articles found!