Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2013, Vol. 33 Issue (1): 70-74    DOI:
Current Issue | Archive | Adv Search |
Effect of Grain Size on Susceptibility to Intergranular Corrosion for Austenitic Stainless Steel
YU Shurong 1, HE Yanni1, LI Shuxin 1, WANG Lu2
1. School of Petrochemical Engineering,Lanzhou University of Technology, Lanzhou 730050, China;
2. Research Institute of Lanzhou Petrochemical Company, Lanzhou 730060, China
Download:  PDF(6132KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Intergranular corrosion susceptibility of diffusion bonded joints of 316L stainless steel was investigated by using microstructure inspection, electrochemical testing and analysis of grain boundary characteristic. Effect of grain size and microstructure texture on sensitization of the diffusion bonded joint was discussed. The result showed that no chromium carbide precipitation was observed in the diffusion bonded joint after 100 h treatment at 650 ℃, while chromium carbide precipitations could be seen clearly after 8 h treatment in the base material. The susceptibility of the diffusion bonded joint is much less than that of the base material. The intergranular corrosion susceptibility of 316LSS decreases with increasing grain size. Grain coarsening and increase in the amount of the twin boundaries lead to the improvement of the intergranular corrosion resistance, but the grain coarsening is the main contribution.

Key words:  diffusion bonded joint      susceptibility of intergranular corrosion      grain size      reactivation ratio     
ZTFLH:  TG174.3+6  

Cite this article: 

YU Shurong,HE Yanni,LI Shuxin,WANG Lu. Effect of Grain Size on Susceptibility to Intergranular Corrosion for Austenitic Stainless Steel. Journal of Chinese Society for Corrosion and protection, 2013, 33(1): 70-74.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2013/V33/I1/70

[1] Jin W S,Lang Y P, Rong F, et al. Research of EPR on the susceptibility to intergranular attach of austenitic stainless steel [J]. J. Chin. Soc. Corros. Prot., 2007, 27(1): 54-59
(金维松, 郎宇平, 荣凡等. EPR法评价奥氏体不锈钢晶间腐蚀敏感性的研究 [J]. 中国腐蚀与防护学报, 2007, 27(1): 54-59)
[2] Lo K H, Kwok C T, Chan W K. Characterisation of duplex stainless steel subjected to long-term annealing in the sigma phase formation temperature range by the DLEPR test [J]. Corros. Sci., 2011, 53(11):3697-3703
[3] Aydo?du G H, Aydinol M K. Determination of susceptibility to intergranular corrosion and electrochemical reactivation behaviour of AISI 316L type stainless steel [J]. Corros. Sci.,2006, 48(11): 3565-3583
[4] Qin L Y, Zhang S L, Song, S Z. Sensitive temperatures for intergranular corrosion of typical stainless steels [J]. J. Chin. Soc. Corros. Prot., 2006, 26(1): 1-5
(秦丽雁, 张寿禄, 宋诗哲. 典型不锈钢晶间腐蚀敏化温度的研究[J]. 中国腐蚀与防护学报, 2006, 26(1): 1-5)
[5] Li S X, Li L, Yu S R, et al. Investigation of intergranular corrosion of 316L stainless steel diffusion bonded joint by electrochemical potentiokinetic reactivation [J]. Corros. Sci. 2011, 53(1): 99-104
[6] Luo H, Xiang D, Guo X F. The relation between austenitic stainless steel crystal grain size and speed of intercrystalline corrosion [J]. J. Shangdong Jianzhu Univ., 2008, 23(5): 406-409
(罗辉, 项东, 郭晓斐. 奥氏体不锈钢晶粒度对晶间腐蚀速度的影响 [J]. 山东建筑大学学报,2008, 23(5): 406-409)
[7] Yu X, Chen S, Liu Y, Ren F. A study of intergranular corrosion of austenitic stainless steel by electrochemical potentiodynamic reactivation, electron back-scattering diffraction and cellular automaton [J]. Corros. Sci., 2010, 52 (6) : 1939-1947
[8] Ralston K D, Birbilis N. Effect of grain size on corrosion: a review [J]. Corrosion, 2010, 66(7): 1-13
[9] Trillo E A, Beltran R, Maldonado J G. Combined effect of deformation (strain and strain state), grain size and carbon content on carbide precipitation and corrosion sensitization in 304 stainless steel [J]. Mater. Charact., 1995, 35(2): 99-112
[10] Parvathavarthini N, Mulki S, Dayal P K. Sensitization control in AISI 316L(N) austenitic stainless steel: Defining the role of the nature of grain boundary [J]. Corros. Sci., 2009,51 (9): 2144-2150
[11] Michiuchi M, Wang Z J. Twin-induced grain boundary engineering for 316 austenitic stainless steel [J]. Acta Mater., 2006, 54 (19): 5179-5184.
[12] Tsurekawa S, Nakamichi S, Watanabe T. Correlation of grain boundary connectivity with grain boundary character distribution in austenitic stainless steel [J]. Acta Mater., 2006, 54(13): 3617-3626
[13] Jones R, Randle V. Sensitisation behaviour of grain boundary engineered austenitic stainless steel [J]. Mater. Sci. Eng., 2010, A527 (16-17): 4275-4280
[1] Xinyuan PENG,Xianliang ZHOU,Xiaozhen HUA. Effect of Grain Size on Susceptibility to Intergranular Corrosion of 316LN Stainless Steel[J]. 中国腐蚀与防护学报, 2016, 36(1): 25-30.
[2] YUAN Juntao,WU Ximao,WANG Wen,ZHU Shenglong,WANG Fuhui. Effect of Grain Size on Oxidation of Heat-resistant Steels in High Temperature Water Steam[J]. 中国腐蚀与防护学报, 2013, 33(4): 257-264.
[3] FENG Wanli, ZHANG Lefu, MA Mingjuan. EFFECTS OF ROLLING ON THE SPECIAL GRAIN BOUNDARIES AND INTERGRANULAR CORROSION OF ALLOY 690[J]. 中国腐蚀与防护学报, 2012, 32(4): 296-299.
[4] ;. Effect of grain size on the atmospheric corrosion resistance of carbon steel in industrial environment[J]. 中国腐蚀与防护学报, 2007, 27(4): 193-196 .
[5] . CORROSION BEHAVIOR OF Fe-10Cr NANOCRYSTALLINE COATINGS ( I ) THE PASSIVE BEHAVIOR OF Fe-10CrNANOCRYSTALLINE COATINGS IN ACIDIC SOLUTION[J]. 中国腐蚀与防护学报, 2007, 27(1): 35-42 .
[6] . CORROSION BEHAVIOR OF Fe-10Cr NANOCRYSTALLINE COATINGS Ⅱ.CORROSION BEHAVIOR OF Fe-10Cr NANOCRYSTALLINE COATINGS IN ACIDIC SOLUTION WITH Cl-[J]. 中国腐蚀与防护学报, 2007, 27(1): 43-47 .
[7] Guanfa Lin. Effect of CO2 Partial Pressure on the Morphology of Corrosion Metallic Product Scales[J]. 中国腐蚀与防护学报, 2004, 24(5): 284-288 .
[8] Tiefan Li. THE ROLE OF METALLIC GRAIN BOUNDARY IN HIGH TEMPERATURE OXIDATION[J]. 中国腐蚀与防护学报, 2002, 22(3): 180-183 .
[9] . GRAIN-SIZE EFFECT ON THE ELECTROCHEMICAL CORROSION OF SURFACE NANOCRYSTALLIZED LOW CARBON STEEL[J]. 中国腐蚀与防护学报, 2001, 21(4): 215-219 .
No Suggested Reading articles found!