Please wait a minute...
J Chin Soc Corr Pro  2011, Vol. 31 Issue (6): 446-452    DOI:
Research Articles Current Issue | Archive | Adv Search |
CORROSION BEHAVIORS AND RELATIVITY OF HIGH STRENGTH ALUMINUM ALLOY IN DIFFERENT SIMULATED SO2  ENVIRONMENT
ZHOU Herong1, MA Jian1, LI Xiaogang2, JIE Ganxin1, FENG Hao1, WANG Jun1, ZHAO Yue1
1. China National Electric Apparatus Research Institute, Guangzhou 510300
2. Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083
Download:  PDF(2752KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The corrosion behaviors of high strength aluminum alloy 7A04 in three different experimental conditions have been investigated by scanning electron microscope (SEM), energy dispersive X-ray detection (EDX), Fourier transform infrared(FTIR) and mass loss method, and the relativity has been analyged  with the result of Jiangjin atmospheric environment. The results show that the corrosion product increases with testing hours prolonging, and the mass loss of corrosion product obeys the exponential rule as C=A•tn. Surface observation shows that corrosion product is agglomerated and extended forth. The corrosion products are made up of alumina, aluminum sulfate hydrate and aluminum chloride. The simulation results for the aluminum alloy 7A04 at cyclic wet-heat conditions (40℃,8 h; 25℃, 16 h; 95% RH) in the 0.067% SO2 polluted environment had better correlation with Jiangjin exposure result according to the mass loss data in all simulation methods in the paper.
Key words:  aluminum alloys      SO2 environment      mass loss method      relativity     
Received:  07 September 2010     
ZTFLH: 

TG172.3

 
Corresponding Authors:  ZHOU Herong     E-mail:  zhouhr_9@163.com

Cite this article: 

ZHOU Herong, MA Jian, LI Xiaogang, JIE Ganxin, FENG Hao, WANG Jun, ZHAO Yue. CORROSION BEHAVIORS AND RELATIVITY OF HIGH STRENGTH ALUMINUM ALLOY IN DIFFERENT SIMULATED SO2  ENVIRONMENT. J Chin Soc Corr Pro, 2011, 31(6): 446-452.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2011/V31/I6/446

[1] Neufeld A K, Cole I S, Bond A M, et al. The initial mechanism of corrosion of zinc by sodium chloride particle deposition[J]. Corros. Sci., 2002, 44: 555-561

[2] Oh S J, Cook D C, Townsend H E. Atmospheric corrosion of different steels in marine, rural and industrial environments[J].Corros. Sci., 1999, 41: 1687-1702

[3] Zhou H R, Ma J, Li X G. Corrosion behavior of 7A04 aluminum alloy deposited with sodium chloride in simulated environment[J].  Chin. J. Nonferrous Met., 2009, 19(5): 974-980

    (周和荣, 马坚, 李晓刚.表面沉积氯化钠的7A04铝合金在模拟环境中的腐蚀行为. 中国有色金属学报,2009, 19(5): 974-980)

[4] Svensson J E, Johansson G. A laboratory study of the initial stages of the atmospheric corrosion of zinc in the presence of NaCl, influence of SO2 and NO2 [J]. Corros. Sci., 1993,34(5): 721-728

[5] Oesch S, Faller M. Environmental effects on materials: The effect of the air pollutants SO2, NO2 and O3 on the corrosion of copper, zinc and aluminum. A short literature survey and results of laboratory exposures [J]. Corros. Sci., 1997, 39(9):1505-1524

[6] Han W, Wang Z Y, Yu G C, et al. Corrosion of aluminum in wet/dry environment containing SO2 [J]. Chin. J.Nonferrous Met.. 2003, 13(2): 631-634

    (韩薇,王振尧,于国才等.铝在含SO2湿润/干燥环境中的腐蚀规律. 中国有色金属学报, 2003,13(3):631-634)

[7] Zhou H R, Li X G, Dong C F. The corrosion behaviors of aluminum alloys in simulated SO2 pollute atmosphere [J]. J. Aeron. Mater., 2008, 28(2): 39-45

    (周和荣, 李晓刚, 董超芳等.铝合金在模拟SO2污染大气环境中的腐蚀行为研究[J]. 航空材料学报.2008, 28(2): 39-45)

[8] Lin C, Li X G. Atmospheric corrosion initial stages of magnesium alloy in the presence of NaCI and SO2 [J]. J. Univ.Sci. Technol. Beijing, 2004, 16(5): 524-528

    (林翠, 李晓刚.NaCl沉积和SO2污染对镁合金初期大气腐蚀行为的影响[J].北京科技大学学报, 2004, 16(5): 524-528)

[9] Graedel T E. Corrosion mechanisms for aluminum exposed to the heat atmosphere [J]. J.Electrochem. Soc., 1989, 136(4):204c-212c

[10] Zhou H R, Li X G, Ma J. Dependence of the corrosion behavior of aluminum alloy 7075 on the thin electrolyte layers [J].Mater. Sci. Eng., 2009, 162 B: 1-8

[11] Zhou H R, Li X G, Dong C F. Corrosion behaviors of aluminium alloys after cyclic wet-dry immersion test in 0.02 mol/L NaHSO3 solution [J]. J. Chin. Soc. Corros. Prot., 2008, 28(6):345-350

     (周和荣, 李晓刚, 马坚等.铝合金在NaHSO3溶液中干湿周浸腐蚀性能及其行为[J].中国腐蚀与防护学报, 2008: 28(6): 345-350)

[12] Zhou H R, Ma J, Lu Q K. Corrosion study of aluminum alloys in Jiangjin environment [J]. Equip. Environ. Eng., 2009,6(3): 10-14

     (周和荣, 马坚, 陆启凯等.铝合金在江津自然大气环境中的腐蚀行为研究. 装备环境工程, 2009, 6(3):10-14)

[13] LI J F, Zheng Z Q, Ren W D. Function mechanism of secondary phase on localized corrosion of Al alloy[J]. Mater. Rev.,2005, 19(2): 81-83

     (李劲风, 郑子樵, 任文达.第二相在铝合金局部腐蚀中的作用机制[J]. 材料导报, 2005, 19(2): 81-83)

[14] Buchheit R G, Grant R P, Hlavaa P F, et al. Local dissolution phenomena associated with S phase(Al2CuMg) particles in aluminium alloy 2024-T3 [J]. J Electrochem. Soc., 1997,144(8): 2621-2628

[15] Buchheit R G, Martinez M A, Montes L P. Evidence for Cu ion formation by dissolution and dealloying the Al2CuMg intermetallic compound in rotating ring-dish collection experiments [J]. J Electrochem.Soc., 2000, 147: 119-128

[16] Liao C M, Olive J M, Gao M, et al. In-situ monitoring of pitting corrosion in aluminium alloy 2024[J]. Corrosion, 1998,54: 451-458
 
[1] ZHOU Herong LI Xiaogang DONG Chaofang MA Jian LU Qikai FENG Hao. CORROSION BEHAVIOR OF ALUMINIUM ALLOYS AFTER CYCLIC WET-DRY IMMERSION TEST IN 0.02 mol/L NaHSO3 SOLUTION[J]. 中国腐蚀与防护学报, 2008, 28(6期): 345-350.
[2] ;. RELATIVITY BETWEEN IMAGE GRAYSCALE AND CORROSION CHARACTERISTICS[J]. 中国腐蚀与防护学报, 2006, 26(6): 321-324 .
[3] Xiaoming Tan. Prediction Model for Corrosion of Aluminum Alloys Based on Artificial Neural network and Analysis of the Precision[J]. 中国腐蚀与防护学报, 2004, 24(4): 218-221 .
[4] Jianping He; Weixun Fan; Qingming Yuan. STUDY ON CORROSION PROPERTIES OF ALUMINUM ALLOYS AT SLOW STRAIN RATE[J]. 中国腐蚀与防护学报, 2003, 23(1): 17-20 .
[5] Jihua Liu; Di Li; Peifen Zhang. EFFECT OF HYDROGEN ON STRESS CORROSIONCRACKING OF LC4 ALUMINUM ALLOY[J]. 中国腐蚀与防护学报, 2002, 22(5): 308-310 .
[6] Zhiming Shi. STUDY ON ELECTROCHEMICAL CATHODIC PROTECTION FOR SUBMARINE ROBOT[J]. 中国腐蚀与防护学报, 1999, 19(4): 245-249 .
No Suggested Reading articles found!