Please wait a minute...
J Chin Soc Corr Pro  2009, Vol. 29 Issue (3): 225-229    DOI:
技术报告 Current Issue | Archive | Adv Search |
CORROSION BEHAVIOR OF NT80SS STEEL IN ENVIRONMENT OF HIGH CONTENTS OF H2S AND CO2
LI Chunfu1; DENG Hongda1;2;CUI Shihua1
1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation; Southwest Petroleum University; Chengdu 610500
2. School of Metallurgical and Materials Engineering; Chongqing University of Science and Technology; Chongqing  401331
Download:  PDF(912KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Corrosion behavior and corrosion influencing factors(total pressure, temperature, corrosion time, Cl-, velocity of flow) of NT80SS casing steels were studied in simulating corrosion environment with high contents of H2S and CO2 in Luojiazhai Gas Field by loss weight corrosion, and corrosion scale was analyzed by potentiodynamically scan, electrochemical impedance spectroscope(EIS) and scanning electron microscope(SEM). The results show that 60 ℃ was the temperature at which corrosion rate of NT80SS steel was the lowest among temperatures tested in this paper. When the total pressure was 9 MPa or above it, corrosion rate at 120 ℃ was lower than that at 90 ℃. However, the total pressure was less than 9 MPa, the result is contrary. Corrosion rate was decreasing with time prolonging; Cl- promoted corrosion of steel. Corrosion rate increased with acce-\linebreak lerated velocity of flow. The electrochemical experiments show that: in the range of 30 ℃-120 ℃, Resistance performance and compact character of the corrosion scale formed at 60 ℃ was the most outstanding among those formed at others temperature, and the anodic polarization rate is high, so corrosion rate of the steel at 60 ℃ is the lowest.

Key words:  NT80SS steel;H2S/CO2;corrosion behavior;corrosion factor     
Received:  25 October 2007     
ZTFLH: 

TG174

 
Corresponding Authors:  LI Chunfu     E-mail:  lichunfu10@163.com

Cite this article: 

LI Chunfu DENG Hongda CUI Shihua. CORROSION BEHAVIOR OF NT80SS STEEL IN ENVIRONMENT OF HIGH CONTENTS OF H2S AND CO2. J Chin Soc Corr Pro, 2009, 29(3): 225-229.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2009/V29/I3/225

[1] Siddiqui R A. Hydrogen embrittlement in 0.31% carbon steel used for petrochemical applications[J]. J. Mater. Process. Technol., 2005, 170: 430-435
[2] Li Z Y. A Handbook of Corrosion and Protection in Oil and Gas Field[M]. Beijing: Petroleum Industry Press, 1999
    (李章亚. 油气田腐蚀与防护技术手册[M]. 北京:石油工业出版社,1999)
[3] Sridhar N, Dunn D S, Anderko A M, el at. Effects of water and gas compositions on the internal corrosion of gas pipelines-modeling and experimental studies[J]. Corrosion, 2001, 57: 221-235
[4] Ramanarayanan T A , Smith S N. Corrosion of iron in gaseous environments and in gas-saturated aqueous environments[J].Corrosion, 1996, 46: 66-75
[5] Zhang Q,Li Q A,Wen J B,et al.Pressure and CO2/H2S corrosion rates of oil tube steels[J]. Welded Pipe and Tube, 2005, 28(5): 24-29
    (张清, 李全安, 文九巴等. 压力与油管钢CO2/H2S腐蚀速率的关系[J]. 焊管, 2005, 28(5): 24-29)
[6] Li C F, Deng H D, Wang B. Influence of corrosion scale on corrosion behavior of casing pipe steels in environment containing H2S and CO2[J]. Trans. Mater. Heat Treat., 2008, 29(1): 89-93
    (李春福, 邓洪达, 王斌. 高含H2S/CO2环境中套管钢腐蚀行为与腐蚀产物膜关系[J]. 材料热处理学报,2008, 29(1): 89-93)
[7] Deng H D, Li C F, Wang B. Study on corrosion of L80 steel in environment of high contents of H$_2$S and CO$_2$[J]. J. Iron Steel Res., 2008,
    (邓洪达, 李春福, 王斌. 高含H2S/CO2环境中L80钢腐蚀规律的研究[J]. 钢铁研究学报,2008)
[8] Li C F, Wang B, Dai J L. Study on structure and electrochemical properties of CO2 corrosion scales on P110 steel corroded at high temperature and pressure[J]. Trans. Mater. Heat Treat., 2006,27(5): 73-81
    (李春福, 王斌, 代加林. P110钢高温高压下CO2腐蚀产物组织结构及电化学研究[J]. 材料热处理学报,2006, 27(5): 73-81)
[9] Wu Y S, Fang Z. Corrosion Methods and Measurement Anti-corrosion Technologies[M]. Beijing: Chemical Industry Presss, 1996  
    (吴荫顺, 方智. 腐蚀实验方法与防腐蚀检测技术[M] 北京:化学工业出版社, 1996)
[10] Zhu Z Q. The Mechanism and Application of Technology of Super Critical Fluid[M]. Beijing: Chemical Industry Press, 2000
     (朱自强. 超临界流体技术--原理和应用[M].北京:化学工业出版社,2000)
[11] Lee K J. A mechanistic modeling of CO2 corrosion of mild steel in the presence of H2S[D]:Texas: Ohio University, 2004, 33-34
[12] Wei B M. Corrosion Theory and Application[M]. Beijing: Chemical Industry Presss, 1984
     (魏宝明. 金属腐蚀理论及应用[M]. 北京:化学工业出版社,1984)
[13] Cao C N, Zhang J Q. Introduction of Electrochemical Impedence Spectra[M]. Beijing: Science Press, 2002   
     (曹楚南, 张鉴清. 电化学阻抗谱导论[M]. 北京: 科学出版社2002)

[1] YUE Zengwu, FU Min, LI Xingeng, TIAN Xuelei. EFFECT OF SHOT PEENING TREATMENT ON STEAM OXIDATION RESISTANCE OF TP304H REHEATER TUBE[J]. 中国腐蚀与防护学报, 2012, 32(2): 137-140.
[2] DING Jie, ZHANG Benge, YAN Mingzhen, LIU Jia. EFFECT OF RARE EARTH ON CORROSION RESISTANCE OF ELECTROLESS Ni-P/PVDF PLATINGS[J]. 中国腐蚀与防护学报, 2012, 32(2): 123-126.
[3] ZHANG Yong, QIN Zuoxiang, XU Hongji, CHANG Kai, LU Xing, TONG Wei. CORROSION RESISTANCE OF DISSIMILAR METAL JOINTS OF ECONOMIC FERRITIC STAINLESS STEEL AND WEATHERING STEEL[J]. 中国腐蚀与防护学报, 2012, 32(2): 115-122.
[4] YAN Ruixia, DU Cuiwei, LIU Zhiyong, LI Xiaogang. DYNAMIC ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY CHARACTERISTICS OF SENSITIZED STEEL 00Cr12Ti[J]. 中国腐蚀与防护学报, 2011, 31(6): 419-425.
[5] LU Xiaofeng, ZHU Xiaolei, LING Xiang. A NOVEL MODEL FOR PREDICTING FLOW ACCELERATED CORROSION RATE IN REDUCER[J]. 中国腐蚀与防护学报, 2011, 31(6): 431-435.
[6] RAO Sixian, WAN Zhang, SONG Guangxiong,ZHANG Zheng, ZHONG Qunpeng. CORROSION FAILURE MODE ANALYSIS OF INTERGRANULAR ATTACK AND HYDROGEN BRITTLENESS BASED ON FAILURE RULES[J]. 中国腐蚀与防护学报, 2011, 31(4): 260-264.
[7] JIA Yizheng, WANG Jianqiu, HAN En-Hou, KE Wei. STRESS CORROSION CRACKING BEHAVIOR OF X100 PIPELINE STEEL IN NS4 SOLUTION UNDER CONSTANT LOADING TEST[J]. 中国腐蚀与防护学报, 2011, 31(3): 184-189.
[8] LIU Cun, ZHAO Weimin, AI Hua, WANG Yong, DONG Lixian. ELECTROCHEMICAL CORROSION BEHAVIORS OF ARC-SPRAYED ALUMINUM COATING[J]. 中国腐蚀与防护学报, 2011, 31(1): 62-67.
[9] LU Zhaoling, GUO Xingpeng. INHIBITION PERFORMANCE AND MECHANISM OF LAURIC ACID IN CO2 SATURATED NaCl SOLUTION[J]. 中国腐蚀与防护学报, 2010, 30(6): 475-480.
[10] LIU Wei, WANG Jia. ENVIRONMENTAL IMPACT OF MATERIAL CORROSION RESEARCH PROGRESS IN MARINE SPLASH ZONE[J]. 中国腐蚀与防护学报, 2010, 30(6): 504-512.
[11] DING Yi, ZHAO Jun, SHI Hongqi, MA Liqun. A FAILURE ANALYSIS ON CRACKING OFΩ LOOP OF HIGH PRESSURE HYDROGENATION HEAT EXCHANGER[J]. 中国腐蚀与防护学报, 2010, 30(5): 413-415.
[12] WANG Pengfei; LI Chunfu; DENG Hongda; CUI Sihua;CHEN Gongjian; SHEN Wenzh. STABILITY OF MELT INTERFACE REACTION IN H2S/CO2 COEXISTENCE ENVIRONMENT[J]. 中国腐蚀与防护学报, 2010, 30(2): 97-1000.
[13] WEI Hua; HUANG Liang; LIANG Jingjing; SUN Xiaofeng; GUAN Hengrong; HU Zhuangqi. EFFECT OF Re ON THE HOT-CORROSION BEHAVIOR OF A NiCrAlY OVERLAY COATING[J]. 中国腐蚀与防护学报, 2010, 30(2): 150-154.
[14] GU Baoshan; LIU Jianhua. A RESEARCH ON pH DURING THE PROCESSION OF THE CERIUM(III) FILM FORMATION OF ALUMINUM ALLOYS BY EIS[J]. 中国腐蚀与防护学报, 2010, 30(2): 124-128.
[15] TANG Zilong; LIU Zhe. ELECTROCHEMICAL ELEVATION OF CORROSION RESISTANCE OF OLIVE-GREEN FILM ON LY12 Al ALLOY PREPARED IN NaOH[J]. 中国腐蚀与防护学报, 2010, 30(1): 25-28.
No Suggested Reading articles found!