Please wait a minute...
J Chin Soc Corr Pro  2009, Vol. 29 Issue (2): 81-87    DOI:
技术报告 Current Issue | Archive | Adv Search |
ACOUSTIC EMISSION SIGNAL ANALYSIS FOR ROLLED AZ31B MAGNESIUM ALLOY DURING CORROSION FATIGUE PROCESS
ZHOU Huamao; WANG Jianqiu; ZHANG Bo; HAN Enhou; ZANG Qishan
Key Laboratory for Corrosion and Protection; Institute of Metal Research;Chinese Academy of Sciences; Shenyang 110016
Download:  PDF(647KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Acoustic emission (AE) signals during corrosion fatigue of a rolled AZ31B magnesium alloy were studied. There were mainly four types of signals found in the corrosion fatigue process. Two types of AE signals corresponded respectively to anodic dissolution and cathodic hydrogen evolution appeared in a whole loading cycle. The signals of anodic dissolution belonged to the sources in plate produced extensive waveform, while the signals of cathodic hydrogen evolution belonged to the sources out of plate produced flexural waveform.Another two types of AE signals were corresponded to mechanical signals. One was the signals of plastic deformation which were continuous signal and appeared at the certain stress stage in a loading cycle. At the stage of crack propagation, crack propagation signals appeared at high stress loading part of each cycle.

Key words:  AZ31B magnesium alloy      corrosion fatigue      acoustic emission      spectrum analysis     
Received:  24 July 2007     
ZTFLH: 

TG146

 
Corresponding Authors:  WANG Jianqiu     E-mail:  jiqwang@imr.ac.cn

Cite this article: 

ZHOU Huamao WANG Jianqiu ZHANG Bo HAN Enhou ZANG Qishan. ACOUSTIC EMISSION SIGNAL ANALYSIS FOR ROLLED AZ31B MAGNESIUM ALLOY DURING CORROSION FATIGUE PROCESS. J Chin Soc Corr Pro, 2009, 29(2): 81-87.

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2009/V29/I2/81

[1] Liu Y, Li Y Y, Zhang W W, et al. Development of the fatigue of magnesium alloys[J]. Mater. Rev., 2005, 19(2): 87-89
    (刘英, 李元元, 张卫文等. 镁合金疲劳的研究进展[J]. 材料导报,2005, 19(2): 87-89)
[2] Hilpert M, Wagner L. Corrosion fatigue behavior of the high strength magnesium alloy AZ80[J]. J. Mater. Eng. Performance., 2000, 9(4): 402-407
[3] Eliezer A, Gutman E M, Abramov E, et al. Corrosion fatigue of die cast and extruded magnesium alloys[J]. J. Light. Met., 2001, 1: 179-186
[4] Unigovski Ya, Eliezer A, Abramov E, et al. Corrosion fatigue of extruded magnesium alloys[J]. Mater. Eng., 2003, A360: 132-139
[5] Yuan Z M, Ma Y K, He Z Y. Acoustic Emission Technology and Its Application[M]. Beijing: China Machine \linebreak Press, 1985
    (袁振明, 马羽宽, 何泽云. 声发射技术及其应用[M]. 北京: 机械工业出版社, 1985)
[6] Zhang B Q. The evaluation of corrosion process of metals by use of acoustic emission[J]. J. Daqing Pet. Inst., 1994, 18(2): 60-68
    (张宝琪. 利用声发射评定金属的腐蚀过程[J]. 大庆石油学院学报,1994, 18(2): 60-68)
[7] Berkovits A, Fang D. Study of fatigue crack characteristics by acoustic emission[J]. Eng. Fract. Mech., 1995, 51(3): 401-416
[8] Lindley T C, Palmer I G, Richards C E. Acoustic emission monitoring of fatigue crack growth[J]. Mater. Sci. Eng., 1978, 32: 1-15
[9] Fang D, Berkovits A. Evaluation of fatigue damage accumulation by acoustic emission[J].Fatigue. Fract. Eng. Mater. Struct., 1994, 17(9): 1057-1067
[10] Shan D, Nayeb-Hashemi H. Fatigue-life prediction of SiC particulate reinforced aluminum alloy 6061 matrix composite using AE stress delay concept[J].J. Mater. Sci., 1999, 34: 3263-3273
[11] Dzenis Y A. Cycle-based analysis of damage and failure in advanced composites under fatigue 1. Experimental observation of damage development within loading cycles[J]. Int. J. Fatigue., 2003, 25: 499-510
[12] Philips A L,Godinez V G, Stafford S W. Amplitude distribution analysis for b-value relationship to the plasticity of 7075-T6 aluminum[J]. Mater. Eval.,1985, 43: 420-425
[13] Geng R S, Shen G T, Liu S F. Modal acoustic emission: a powerful tool for acoustic emission signal processing[J]. Nondestru. Test., 2002, 24(8): 341-345
      (耿荣生, 沈功田, 刘时风. 模态声发射--声发射信号处理的得力工具[J].无损检测, 2002, 24(8): 341-345)
[14]} Kohn D H, Ducheyne P. Sources of acoustic emission during fatigue of Ti-6Al-4V: effect of microstructure[J]. J. Mater. Sci., 1992, 27: 1633-1641
[15]} Zhou H M, Wang J Q, Zang Q S, et al. Chracteristics of acoustic emission during fatigue of as-rolled AZ31B magnesium alloy[J]. Mater. Sci. Forum.,2007, 546-549: 579-584

[1] Jiapeng LIAO,Xinqiang WU. Review of Notch Effect on Fatigue Behavior of Materials for LWR Plants in High Temperature High Pressure Water[J]. 中国腐蚀与防护学报, 2018, 38(6): 511-516.
[2] Xiaoqiang LIU,Xuelian XU,Jibo TAN,Yuan WANG,Xinqiang WU,Yuli ZHENG,Fanjiang MENG,En-Hou HAN. Effect of Reactor Coolant Environment on Fatigue Performance of Alloy 690 Steam Generator Tubes[J]. 中国腐蚀与防护学报, 2015, 35(3): 213-219.
[3] LIANG Rui,ZHANG Xinyan,LI Shuxin,JIANG Feng,CHEN Shuaifu. Effect of Semi-elliptical Pit on Stress Concentration of Round Bar[J]. 中国腐蚀与防护学报, 2013, 33(6): 532-536.
[4] TAN Jibo, WU Xinqiang, HAN En-Hou. REVIEW ON RELATIONSHIP BETWEEN DYNAMIC STRAIN AGING AND ENVIRONMENTALLY ASSISTED CRACKING OF STRUCTURAL MATERIALS USED IN NUCLEAR POWER PLANTS[J]. 中国腐蚀与防护学报, 2012, 32(6): 437-442.
[5] Chao Yun Wu. Study of surface treatment on the AZ31B magnesium alloys by silane agent[J]. 中国腐蚀与防护学报, 2008, 28(3): 146-150 .
[6] . CORROSION FATIGUE BEHAVIOR OF 304 STAINLESS STEEL MICRO-SIZED SPECIMENS[J]. 中国腐蚀与防护学报, 2008, 28(2): 99-103 .
[7] ;. INFLUENCE OF COATING OF COVERING AIRPLANE ON CORROSION FATIGUE LIFE OF ALUMINIUM ALLOY LY12CZ[J]. 中国腐蚀与防护学报, 2006, 26(1): 34-36 .
[8] . Mechanisms for corrosion fatigue crack propagation[J]. 中国腐蚀与防护学报, 2004, 24(6): 321-333 .
[9] Huiming Jin. IMPROVEMENT OF ADHESION OF THE SCALE FORMED ON Co-40Cr(wt%) ALLOY BY YTTRIUM IMPLANTATION[J]. 中国腐蚀与防护学报, 1999, 19(1): 50-54 .
[10] WANG Rong (Xi'an Petroleum Institute; Xi'an 710065)ZHENG Xiu-lin (Northwestern Polytechnical University; Xi'an 710072). CORROSION FATIGUE CRACK INITIATION LIFE OF AN ALUMINUM ALLOY UNDER VARIABLE AMPLITUDE LOADING[J]. 中国腐蚀与防护学报, 1998, 18(3): 178-186.
[11] WANG Rong(Xi'an Petroleum Institute; Xi'an 710061). A FRACTURE MODEL FOR CORROSION FATIGUE CRACK PROPAGATION PROCESS[J]. 中国腐蚀与防护学报, 1998, 18(2): 87-94.
[12] FU Chaoyang ZHENG Jiashen (Huazhong University of Science and Technology; Wuhan 430074). HYDROGEN PERMEATION AND CORROSION FATIGUE BEHAVIOR OF CARBON STEEL IN DRILLING FLUIDS[J]. 中国腐蚀与防护学报, 1997, 17(4): 263-268.
[13] GAO Hua CAO Weijie YING Hong(Research Institute of Energy & Environmental Engineering; Shanghai University of EngineeringScience; Sanghai 200335 China). A NEW METHOD (MST) FOR EXAMINING CORROSION FATIGUE CRACK GROWTH[J]. 中国腐蚀与防护学报, 1997, 17(3): 221-226.
[14] WEI Xuejun LI Jin KE Wei(State Key Laboratory of Corrosion and Protection; Institute of Corrosion and Protection of Metals; The Chinese Academy of Sciences; Shenyang 110015). SINGLE OVERLOAD RETARDATION OF A537 STEEL IN 3.5% NaCl SOLUTION UNDER CATHODIC POLARIZATION AND FREECORROSION CONDITION[J]. 中国腐蚀与防护学报, 1997, 17(2): 99-105.
[15] XIE Jianhui WU Yinshun ZHU Rizhang (Department of Surface Science & Corrosion Engineering; University of Science & Technology Beijing). EFFECT OF STRESS ON INITIATION AND PROPAGATION OF CORROSION FATIGUE CRACKS FOR TYPE 316L STAINLESS STEEL IN HANK'S PHYSIOLOGICAL SOLUTION[J]. 中国腐蚀与防护学报, 1997, 17(1): 31-35.
No Suggested Reading articles found!