Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2022, Vol. 42 Issue (6): 913-920    DOI: 10.11902/1005.4537.2021.299
Current Issue | Archive | Adv Search |
Ecology of Harbor Fouling Organisms on Spot Detectation and Quantification of Fouling Organisms of Seagull Floating Dock
MA Shide1, LIU Huilian1(), LIU Jie2, HAN Wen3, TAI Yu3, KANG Ning4, WANG Zaidong3, LIU Xin4, DUAN Jizhou1()
1. Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
3. Qingdao Dongqi Machinery Equipment Co. Ltd., Qingdao 266071, China
4. College of Materials Science and Enginneering, Qingdao University of Science and Technology, Qingdao 266042, China
Cite this article: 

MA Shide, LIU Huilian, LIU Jie, HAN Wen, TAI Yu, KANG Ning, WANG Zaidong, LIU Xin, DUAN Jizhou. Ecology of Harbor Fouling Organisms on Spot Detectation and Quantification of Fouling Organisms of Seagull Floating Dock. Journal of Chinese Society for Corrosion and protection, 2022, 42(6): 913-920.

Download:  HTML  PDF(14098KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The composition of fouling organism's community was on-spot detected on several portions below waterline, including the bow, hull and stern rudder bay, of the so called “Seagull floating dock”, which has been in service for more than 5 years at Qingdao harbor. It is found that more than 30 species of eight types of organisms were detected, among which Mytilus galloprovincialis is the dominant species, and it is the first time that the Scrupocellaria species was discovered in this area. The ranking of species diversity is bow > stern rudder bay>hull. The most seriously fouling portion is the stern rudder bay, where the fouling organisms here overlap and attach to a thickness up to 15 cm, and the percentage of covered area of the hard-shelled fouling organisms reached 70%. The influence of seasonal factors, hull structure, sea current state and sunniness on the fouling organism's community was discussed. The on-the-spot classification method was proposed for the first time and applied in this study, the fouling organisms detected on the Seagull floating dock were classified into four categories: hard-shelled groups, crusting groups, uprighting groups, and algae groups. Then the biofouling distribution map of the floating dock was drawn according to the size of the attachment area of the hard-shelled groups. This can promote the communications between the non-biological professionals, the formulation of anti-fouling standards, and the mathematical modeling of fouling organisms.

Key words:  fouling organism      biofouling      community composition      floating dock     
Received:  25 October 2021     
ZTFLH:  TG172  
Fund: Strategic Priority Science and Technology Project of Chinese Academy of Sciences(XDA23050304);Strategic Priority Science and Technology Project of Chinese Academy of Sciences(XDA13040404);National Natural Science Foudation of China(59471054);National Natural Science Foudation of China(59071040)
About author:  DUAN Jizhou, E-mail: duanjz@qdio.ac.cn
LIU Huilian, E-mail: hlliu@qdio.ac.cn;

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2021.299     OR     https://www.jcscp.org/EN/Y2022/V42/I6/913

Fig.1  Pictures of fouling organisms from the peripheral area of the stern rudder bay
Fig.2  Fouling organisms community of the stern rudder bay (a) and hull bottom in the stern rudder bay (b)
Fig.3  Sketch map of variations of fouling organisms community from the stern chamber hatch to the hull bottom in the stern chamber
Fig.4  Detection partition map of the starboard (a) and the portside (b)
Fig.5  Fouling organisms community in upper waterline area on starboard
Fig.6  Algae collected from the starboard bow: (a) Ulva pertusa, (b) Bryopsis sp., (c) Grateloupia sp., (d) Chondria sp.
Fig.7  Mytilus galloprovincialis and the overlapping attach-ment organisms on it
Fig.8  Fouling organisms community at middle part of the hull (a) and lower part near bottom (b) on startoard; portside (c), upper waterline area (d), and middle part of the hull (e), and lower part near bottom (f) on portside; and (g) Bow
TaxaMain species“Seagull”docking survey (2009.9-2015.4)“Seagull”docking survey(2015.4-2020.10)“Seagull”panel test (2010-2021)
Bryozoa1. Bugula neritina1, 3, 5, 61, 3, 5, 6, 71, 2, 3, 4, 5, 6
2. B. stolonifera
3. Tricellaria occidentalis
4. Biflustra grandicella
5. Cryptosula pallasiana
6. Watersipora subtorquata
7. Scrupocellaria sp.
Polychaeta1. Hydroides elegans1, 31, 3, 41, 2, 3, 4
2. Polychaetes with mud tubes
3. Polychaetes with calcareous tubes
4. Spirorbis sp.
Porifera1. Haliclona palmata1, 21, 21, 2
2. Suberites sp.
Mollusca1. Mytilusgalloprovincialis1, 2, 31, 2, 31, 2, 3
2. Crassostrea gigas
3. Musculus senhousei
Cnidaria1. Bougainvillia sp.1, 21, 22
2. Diadumene lineata
Crustacea1. Amphibalanus amphitrite1, 21, 22
2. Fistulobalanus kondakovi
Tunicata1. Styela clava1, 2, 31, 2, 31, 2, 3
2. Ciona intestinalis
3. Botryllus schlosseri
Algae1. Ulva lactuca12, 8, 9, 101, 2, 3, 4, 5, 6, 7, 9, 11
2. Ulva pertusa
3. Enteromorpha spp.
4. Laminariajaponica
5. Undaria pinnatifida
6. E.prolifera
7. Cladophora sp.
8. Bryopsis sp.
9. Grateloupia spp.
10. Chondria sp.
11. Sargassum sp.
Table 1  Results of the fouling organisms detection on Seagull floating dock
Fig.9  Sketch map of the degree of fouling
[1] Sun S, Sun X X. Theory and Practice of Gulf Ecosystem: A Case Study of Jiaozhou Bay [M]. Beijing: Science Press, 2015
(孙松, 孙晓霞. 海湾生态系统的理论与实践: 以胶州湾为例 [M]. 北京: 科学出版社, 2015)
[2] Yan T, Cao W H. Ecology of marine fouling organism in Huanghai and Bohai Seas [J]. J. Marin. Sci., 2008, 26(3): 107
(严涛, 曹文浩. 黄、渤海污损生物生态特点及研究展望 [J]. 海洋学研究, 2008, 26(3): 107)
[3] Ma S D. Discussion on marine corrosion and marine fouling—Ⅰ review of the formation of sub-discipline [A]. International Symposium on Marine and Heavy Anticorrosive Coatings and coating Technology [C]. Xiamen, 2010
(马士德. 海洋腐蚀与海洋污损论谈—Ⅰ分支学科形成回顾 [A]. 第四届国际海洋与重防腐涂料及涂装技术研讨会论文集 [C]. 厦门, 2010)
[4] Heaf N J. The effect of marine growth on the performance of fixed offshore platforms in the North Sea [A]. Proceedings of the Offshore Technology Conference [C]. Houston, Texas, 1979
[5] Sholkovitz E R. Oceanographic institution [J]. Mar. Foul. Prev., 1952: 3
[6] Huang Z G, Cai R X. Marine Fouling Organisms and Frevention [M]. Beijing: Ocean Press, 1984
(黄宗国, 蔡如星. 海洋污损生物及其防除 [M]. 北京: 海洋出版社, 1984)
[7] Feng W L, Gui C B, Zhou J Q. The damage of biofouling on ships and the new technology of anti-fouling [J]. J. Sichuan Ordn., 2009, 30(11): 129
(冯万亮, 桂赤斌, 周建奇. 生物污损对舰船的危害及防污新技术 [J]. 四川兵工学报, 2009, 30(11): 129)
[8] Zheng J Y. Influence of marine biofouling on corrosion behaviour [J]. J. Chin. Soc. Corros. Prot., 2010, 30: 171
(郑纪勇. 海洋生物污损与材料腐蚀 [J]. 中国腐蚀与防护学报, 2010, 30: 171)
[9] Fang F, Yan T. Status quo and prospects of marine fouling studies in South China Sea [J]. J. Trop. Oceanol., 2004, 23(1): 76
(方芳, 严涛. 南海污损生物研究的现状及展望 [J]. 热带海洋学报, 2004, 23(1): 76)
[10] Liu Y, Chen F, Wang Y, et al. On the anti-marine-fouling technology for seawater system of nuclear power platform [J]. Ship Ocean Eng., 2020, 49(6): 118
(刘毅, 陈丰, 王洋 等. 核电平台海水系统防海洋生物污损技术 [J]. 船海工程, 2020, 49(6): 118)
[11] Shao C Y, Le Z J, Wang L J. Effect of marine fouling organism on offshore wind turbine foundation [J]. China Offshore Platf., 2019, 34(4): 45
(邵聪颖, 乐治济, 王李吉. 海洋污损生物对海上风机基础的影响 [J]. 中国海洋平台, 2019, 34(4): 45)
[12] Wei X. Discussion on the influence of marine biofouling of jacket platform security [J]. Total Corros. Control, 2015, 29(2): 55
(魏羲. 浅谈海洋生物污损对导管架平台安全的影响 [J]. 全面腐蚀控制, 2015, 29(2): 55)
[13] Sun P, Sun Y H, Wang Y Y. A study on prevention and elimination for marine fouling organism [J]. J. Dalian Railway Inst., 2000, 21(4): 94
(孙萍, 孙咏红, 王艳云. 海洋污损生物防除技术研究 [J]. 大连铁道学院学报, 2000, 21(4): 94)
[14] Fitridge I, Dempster T, Guenther J, et al. The impact and control of biofouling in marine aquaculture: A review [J]. Biofouling, 2012, 28: 649
doi: 10.1080/08927014.2012.700478 pmid: 22775076
[15] Zhang K, Cong W W, Gui T J, et al. Effect and remediation of biofouling on marine aquaculture [J]. Mater. Rep., 2020, 34(): 78
(张凯, 丛巍巍, 桂泰江 等. 海洋水产养殖业中的生物污损与控制 [J]. 材料导报, 2020, 34(): 78)
[16] Delauney L, Compère C, Lehaitre M. Biofouling protection for marine environmental sensors [J]. Biofouling, 2010, 6: 503
[17] Yu L M, Zhao H Z, Li C C. Comparison study of antifouling technology for ocean monitor instruments [J]. Paint Coat. Ind., 2006, 36(10): 56
(于良民, 赵海洲, 李昌诚. 海洋监测仪器防污技术的对比研究 [J]. 涂料工业, 2006, 36(10): 56)
[18] Kong X F, Jiang Y Q, Zhang J, et al. Influence of biofouling on performance of marine monitoring instruments and anti-biofouling technique [J]. Corros. Sci. Prot. Technol., 2017, 29: 664
(孔祥峰, 姜源庆, 张婧 等. 生物污损对海洋监测仪器的影响及其防护措施 [J]. 腐蚀科学与防护技术, 2017, 29: 664)
[19] Ma S D, Zhao S J, Liu X, et al. Biofouling of Al based sacrificial anode-analysis of “anode bract” [J]. Mar. Sci., 2018, 42(10): 16
(马士德, 赵生俊, 刘欣 等. Al基牺牲阳极的生物污损—“阳极苞”的解析 [J]. 海洋科学, 2018, 42(10): 16)
[20] Ma S D, Wang Z D, Liu H L, et al. Study on biofouling of hot-dip galvanizing material [J]. J. Guangxi Acad. Sci., 2018, 34: 251
(马士德, 王在东, 刘会莲 等. 热浸锌材料的生物污损研究 [J]. 广西科学院学报, 2018, 34: 251)
[21] Ma S D, Wang Z D, Liu H L, et al. A research on biofouling of cold galvanizing coatings [J]. China Coat., 2017, 32(9): 32
(马士德, 王在东, 刘会莲 等. 冷镀锌涂料的生物污损研究 [J]. 中国涂料, 2017, 32(9): 32)
[22] Ma S D, Zhang L L, Xiu P Y, et al. Preliminary study on community change of antifouling coatings/seawater interface in Qingdao harbor [J]. China Coat., 2019, 34(1): 52
(马士德, 张林林, 修鹏远 等. 青岛港湾防污涂料/海水界面细菌污损群落变化初探 [J]. 中国涂料, 2019, 34(1): 52)
[23] Ma S D, Wang Z D, Liu H L, et al. Investigation and analysis of fouling organisms in Qingdao Seagulls floating docks [J]. J. Guangxi Acad. Sci., 2015, 31: 214
(马士德, 王在东, 刘会莲 等. 青岛海鸥浮码头冬季污损生物调查分析 [J]. 广西科学院学报, 2015, 31: 214)
[24] Vinagre P A, Simas T, Cruz E, et al. Marine biofouling: a european database for the marine renewable energy sector [J]. J. Mar. Sci. Eng., 2020, 8: 495
doi: 10.3390/jmse8070495
[25] Ma S D, Guo W M, Zhao X, et al. Preliminary study on corrosion and biofouling influenced by position change of the South China Sea sea-water Corrosion Station [J]. J. Guangxi Acad. Sci., 2015, 31: 202
(马士德, 郭为民, 赵霞 等. 南海海水腐蚀站站位变迁对腐蚀及生物污损的影响初探 [J]. 广西科学院学报, 2015, 31: 202)
[1] HU Jiezhen, SHANGGUAN Juyu, DENG Peichang, FENG Qilan, WANG Gui, WANG Peilin. Effect of Barnacle Adhesion on Corrosion Behavior of Q235 Steel[J]. 中国腐蚀与防护学报, 2023, 43(5): 1145-1150.
[2] WANG Yi,ZHANG Dun. Research Progress of Bismuth Based Visible Light Photocatalytic Antifouling Materials[J]. 中国腐蚀与防护学报, 2019, 39(5): 375-386.
[3] LIU Jiao, HE Qiwei, CHEN Hong, CHEN Yu, ZHANG Zhao, ZHANG Jianqing. Review on Marine Antifouling Coatings[J]. 中国腐蚀与防护学报, 2014, 34(6): 483-488.
[4] ZHENG Jiyong. INFLUENCE OF MARINE BIOFOULING ON CORROSION BEHAVIOUR[J]. 中国腐蚀与防护学报, 2010, 30(2): 171-176.
No Suggested Reading articles found!