Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2021, Vol. 41 Issue (4): 535-541    DOI: 10.11902/1005.4537.2020.139
Current Issue | Archive | Adv Search |
Corrosion Behavior and Life Prediction of High Grade OCTG in Full-life-cycle Environment of High Temperature High Pressure Gas Well
ZHAO Mifeng1, FU Anqing2(), HU Fangting1, XIE Junfeng1, LONG Yan2, GENG Hailong1
1.Oil and Gas Engineering Research Institute, Petro China Tarim Oilfield Company, Korla 841000, China
2.State Key Laboratory for Performance and Structure Safety of Petroleum Tubular Goods and Equipment Materials, CNPC Tubular Goods Research Institute, Xi'an 710077, China
Download:  HTML  PDF(6387KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion behavior of 140ksi high grade steels, namely the so-called oil country tubular goods (OCTG), in the single environment and multi-consecutive environment in the full-life-cycle of high pressure and high temperature gas wells was systematically studied via high pressure and high temperature corrosion testing system. The results showed that the decreasing trend of corrosion rates of 140ksi high grade OCTG steels in both single environment tests and multi-consecutive environment tests could be ranked as follows: CRfresh acid>CRused acid>CRformation water>CRcondensate water, and some “genetic effects” were also observed in the multi-consecutive environment tests. The corrosion rates of 140ksi high grade OCTG steels decreased with the increase of test time in the formation water for both single environment tests and multi-consecutive environment tests, which tended to be stable after 60 d exposure. Based on the pitting rates, the service life of 140ksi high grade OCTG steels under different corrosion conditions was calculated using the finite element method.

Key words:  high grade OCTG      full-life-cycle      single environment      multi-consecutive environment      lifetime     
Received:  01 August 2020     
ZTFLH:  TG174  
Fund: National Key Research and Development Project(2019YFF0217502);CNPC Science and Technology Key Project(2018E-1809)
Corresponding Authors:  FU Anqing     E-mail:  fuanqing@cnpc.com.cn
About author:  FU Anqing, E-mail: fuanqing@cnpc.com.cn

Cite this article: 

ZHAO Mifeng, FU Anqing, HU Fangting, XIE Junfeng, LONG Yan, GENG Hailong. Corrosion Behavior and Life Prediction of High Grade OCTG in Full-life-cycle Environment of High Temperature High Pressure Gas Well. Journal of Chinese Society for Corrosion and protection, 2021, 41(4): 535-541.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2020.139     OR     https://www.jcscp.org/EN/Y2021/V41/I4/535

Full-life-cycle environmentComposition / mg·L-1pHTemperature / ℃Time
Live acid (LA)10%HCl+1.5%HF+3%HAc+5%TG201 corrosion inhibitor10%~20% acid solution1204 h
Spent acid (SA)K+ / 1597.32, Ca2+ / 11693.00, Mg2+ / 3145.63, Cl- / 62738.01, Fe2+/52.402.61805 d
Condensate water (CW)K+ / 7380, Ca2+ / 4.745, Mg2+ / 2.463, Na+ / 1050,HCO3- / 4310, Cl- / 2990, SO42- / 8627.7918010 d
Formation water (FW)K+ / 6620, Ca2+ / 8310, Mg2+ / 561, Na+ / 76500, HCO3- / 189, Cl- / 128000, SO42- / 4306.9818015, 30, 60 and 90 d
Table 1  Characteristics of gas well full-life-cycle environment
Fig.1  Corrosion testing method based on gas well full-life-cycle
Fig.2  Comparison of corrosion rates of high grade OCTG in gas well full-life-cycle single and multi-consecutive environment
Fig.3  Corrosion morphologies of high grade OCTG in gas well full-life-cycle single environment: (a) LA (4 h), (b) SA (4 h), (c) CW (10 d), (d) FW (15 d), (e) FW (30 d), (f) FW (60 d), (g) FW (90 d)
Fig.4  Corrosion morphologies of high grade OCTG in gas well full-life-cycle multi-consecutive environment: (a) LA (4 h), (b) LA+SA (5 d), (c) LA+SA+CW (10 d), (d) LA+SA+CW+FW (15 d), (e) LA+SA+CW+FW (30 d), (f) LA+SA+CW+FW (60 d), (g) LA+SA+CW+FW (90 d)
Fig.5  Plots of the cumulative probability of pitting depth
Fig.6  Corrosion pits of high grade OCTG in gas well full-life-cycle multi-consecutive environment (60 d), Fig.6a~f are 6 randam corrosion pits
1 He J C, Li C L, Jing Y L. Current situation of special casing and countermeasures of Baotou Steel (Group) Corporation [J]. Sci. Technol. Baotou Steel (Group) Corp., 2007, 33(6): 1
贺景春, 李春龙, 井溢龙. 特殊套管国内外发展现状及包钢的对策 [J]. 包钢科技, 2007, 33(6): 1
2 Li P Q, Shi J Q, Zhao G X, et al. Service conditions and current R & D situation of oil tubing and casing (Part I) [J]. Steel Pipe, 2008, 37(4): 6
李平全, 史交齐, 赵国仙等. 油套管的服役条件及产品研制开发现状 (上) [J]. 钢管, 2008, 37(4): 6
3 Li P Q, Shi J Q, Zhao G X, et al. Service conditions and current R & D situation of oil tubing and casing (Part II) [J]. Steel Pipe, 2008, 37(5): 11
李平全, 史交齐, 赵国仙等. 油套管的服役条件及产品研制开发现状 (下) [J]. 钢管, 2008, 37(5): 11
4 Zhao X W, Liu R, Jiang Y, et al. Analysis of corrosion mechanism of casing damage well in Changqing oilfield and prevention and control technology [A]. The International Petroleum & Petrochemical Technology Conference 2018 [C], 20182074: 1
5 Mu L J, Zhao W Z. Effect of pre-strain states on electronic property of passive film on J55 pipeline steel in Changqing Oilfield Luo-he stratum water [J]. J. Chin. Soc. Corros. Prot., 2010, 30: 491
慕立俊, 赵文轸. 预应变状态对J55油套管钢在长庆油田地下洛河水中腐蚀电化学性能的影响 [J]. 中国腐蚀与防护学报, 2010, 30: 491
6 Zhao Y, Qi W L, Xie J F, et al. Investigation of the failure mechanism of the TG-201 inhibitor: Promoting the synergistic effect of HP-13Cr stainless steel during the well completion [J]. Corros. Sci., 2020, 166: 108448
7 Li J P, Zhao G X, Hao S M. Dynamic corrosion behaviors of N80, P105 and SM110 steel [J]. J. Chin. Soc. Corros. Prot., 2005, 25: 241
李建平, 赵国仙, 郝士明. 几种因素对油套管钢CO2腐蚀行为影响 [J]. 中国腐蚀与防护学报, 2005, 25: 241
8 Gong N, Zhang Q L, Li J, et al. New method of casing selection in carbon dioxide corrosion environment and its application [J]. Surf. Technol., 2017, 46(10): 224
龚宁, 张启龙, 李进等. 二氧化碳腐蚀环境下套管选材新方法及应用 [J]. 表面技术, 2017, 46(10): 224
9 Feng H Z, Xing X J, Gu L, et al. Corrosion behavior of T95 casing in high temperature, high pressure and high H2S condition [J]. Surf. Technol., 2018, 47(12): 21
冯桓榰, 邢希金, 谷林等. 高温高压高含硫气井T95技术套管腐蚀实验研究 [J]. 表面技术, 2018, 47(12): 21
10 Fan Y P, Zhou Y N. Effects of H2S/CO2 corrosion scale on corrosion behavior of T95 casing steel at different temperature [J]. Surf. Technol., 2016, 45(10): 180
范亚萍, 周怡诺. 不同温度下H2S/CO2腐蚀产物膜对T95套管腐蚀行为的影响 [J]. 表面技术, 2016, 45(10): 180
11 Yang X T, Xiao W W, Liu H T, et al. Method of evaluating corrosion rate of formates to casing and tubing strings and the influencing factors [J]. Drill. Fluid Complet. Fluid, 2016, 33(6): 51
杨向同, 肖伟伟, 刘洪涛等. 甲酸盐对套管/油管腐蚀速率评价方法与影响因素 [J]. 钻井液与完井液, 2016, 33(6): 51
12 Bai H T, Yang M, Dong X W, et al. Research progress on CO2 corrosion product scales of carbon steels [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 295
白海涛, 杨敏, 董小卫等. CO2腐蚀产物膜的研究进展 [J]. 中国腐蚀与防护学报, 2020, 40: 295
13 Chen C F, Lu M X, Zhao G X, et al. Behavior of CO2 pitting corrosion of N80 steel [J]. J. Chin. Soc. Corros. Prot., 2003, 23: 21
陈长风, 路民旭, 赵国仙等. N80油管钢CO2腐蚀点蚀行为 [J]. 中国腐蚀与防护学报, 2003, 23: 21
14 Li Y, Li C Y, Chen X, et al. Gray relationship analysis on corrosion behavior of super 13Cr stainless steel in environments of marine oil and gas field [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 471
李洋, 李承媛, 陈旭等. 超级13Cr不锈钢在海洋油气田环境中腐蚀行为灰关联分析 [J]. 中国腐蚀与防护学报, 2018, 38: 471
15 Zhao G X, Chen C F, Lu M X, et al. The formation of product scale and mass transfer channels during CO2 corrosion [J]. J. Chin. Soc. Corros. Prot., 2002, 22: 363
赵国仙, 陈长风, 路民旭等. CO2腐蚀的产物膜及膜中物质交换通道的形成 [J]. 中国腐蚀与防护学报, 2002, 22: 363
16 Lei X W, Fu A Q, Feng Y R, et al. Influence of HAc concentration and temperature on the electrochemical corrosion behavior of Super 13Cr stainless steel [J]. Corros. Prot., 2017, 38: 676
雷晓维, 付安庆, 冯耀荣等. 醋酸浓度和温度对超级13Cr不锈钢电化学腐蚀行为的影响 [J]. 腐蚀与防护, 2017, 38: 676
17 Xie J F, Fu A Q, Qin H D, et al. Influence of surface imperfection on corrosion behavior of 13Cr tubing in gas well acidizing process [J]. Surf. Technol., 2018, 47(6): 51
谢俊峰, 付安庆, 秦宏德等. 表面缺欠对超级13Cr油管在气井酸化过程中的腐蚀行为影响研究 [J]. 表面技术, 2018, 47(6): 51
[1] Xiaodong LIN,Qunjia PENG,En-Hou HAN,Wei KE. Review of Thermal Aging of Nuclear Grade Stainless Steels[J]. 中国腐蚀与防护学报, 2017, 37(2): 81-92.
No Suggested Reading articles found!