Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2016, Vol. 36 Issue (6): 559-565    DOI: 10.11902/1005.4537.2016.124
Orginal Article Current Issue | Archive | Adv Search |
Preparation and Performance of Water-based Chromium-free Dacromet Coating
Qingpeng LI1,2(),Qian XU1,Jianguo LIU2,Chuanwei YAN2,Liang ZHANG3,Yuejun YIN3,Changzhi HAN3
1. School of Material and Metallurgy, Northeastern University, Shenyang 110142, China
2. Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3. Shenyang Hangda Technology Co., Ltd, Shenyang 110043, China
Download:  HTML  PDF(909KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A water-based chromium-free Dacromet coating was prepared with powders of Zn and Al as filler and silane A-187 as film forming material. The coatings were characterized by means of SEM with EDS and XRD, while their corrosion performance was investigated by using potentiodynamic measurement, NSS test and AC impedance spectra. The results showed that the water-based chromium-free Dacromet paint had excellent stability with no obvious change even after storage at 50 ℃ for 48 h; the surface of the applied coatings was smooth and compact without defects, while no tarnish spots could be observed after 480 h salt spray test. The Ecorr of the water-based chromium-free Dacromet coating shifts positively while its Icorr is two magnitudes lower in comparison to those of the bare substrate which indicated that the water-based chromium-free Dacromet coating had excellent corrosion resistance.

Key words:  Zn powder      Al powder      stability      water-based chromium-free      Dacromet coating     

Cite this article: 

Qingpeng LI,Qian XU,Jianguo LIU,Chuanwei YAN,Liang ZHANG,Yuejun YIN,Changzhi HAN. Preparation and Performance of Water-based Chromium-free Dacromet Coating. Journal of Chinese Society for Corrosion and protection, 2016, 36(6): 559-565.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2016.124     OR     https://www.jcscp.org/EN/Y2016/V36/I6/559

Time / h Viscosity / s State
0 70 Normal
1 70 Normal
5 68 Normal
10 73 Normal
24 72 Normal
36 73 Normal
48 71 Normal
60 80 Normal
72 85 Normal
96 95 Normal
120 120 Normal
Table 1  Stability of the water-based chromium-freeDacromet coating (50 ℃)
Fig.1  SEM micrographs of water-based chromium-free Dacromet coating (a) and the magnified image (b)
Content C O Al Si Fe Zn Mo
Atomic fraction / % 41.95 27.98 3.21 4.63 1.98 20.20 0.05
Mass fraction / % 19.35 17.19 3.32 4.99 4.26 50.70 0.19
Table 2  EDS illustration of the water-based chromium-free Dacromet coating
Fig.2  XPS spectra of the water-based chromium-free Dacromet coating (a), Si2p (b), O1s (c) and C1s (d)
Fig.3  Photographs of the water-based chromium-free Dacromet coating before (a) and after (b) NSS test for 480 h
Fig.4  Polarization curves for different samples in 5%NaCl solution
Material Ecorr / V Icorr / Acm-2 Rp / Ω
Substrate -0.72 1.91×10-4 1.11×102
Water-based chromium-free Dacromet coating -1.04 4.79×10-6 4.44×103
Table 3  Electrochemical parameters obtained from polarization curves for untreated and water-based chromium-free Dacromet coating
Fig.5  Nyquist plot for water-based chromium-free Dacromet coating in 5%NaCl solution with 0~336 h immersion time
Fig.6  Impendance module (a) and phase angle (b) plots of water-based chromium-free Dacromet coating in 5%NaCl solution with 0~336 h immersion time
Time / h R1Ωcm2 CPE1-TFcm-2 CPE1-P R2Ωcm2 CPE2-TFcm-2 CPE2-P R3Ωcm2 W1-R W1-T/Fcm-2 W1-P
0 6.31 1.53×10-6 0.67 101 7.24×10-5 0.41 23537 --- --- ---
2 5.75 4.27×10-5 0.48 3703 1.27×10-5 0.75 50439 --- --- ---
24 19.62 4.80×10-6 0.57 379 4.66×10-5 0.76 130470 --- --- ---
72 20.06 4.34×10-5 0.59 203 8.53×10-5 0.77 164630 --- --- ---
96 19.31 4.34×10-5 0.59 171 9.50×10-5 0.76 274590 --- --- ---
192 13.36 3.04×10-5 0.58 188 8.54×10-5 0.64 3011 2237.31 2.68 ×10-3 0.38
240 16.03 2.58×10-5 0.59 237 9.52×10-5 0.64 3123 31.51 1.80 ×10-4 0.35
336 14.40 1.56×10-5 0.64 362 1.25×10-4 0.62 2361 28.25 1.76 ×10-4 0.32
Table 4  Electrochemical parameters obtained from AC impedance spectra for water-based chromium-freeDacromet coating after immersion for different time
Fig.7  Electrical equivalent circuits for water-based chromium-free Dacromet coating: (a) 0~96 h;(b) 192~336 h
[1] Song J W, Du M.Current status of non-chromium Zn-Al coating[J]. Corros. Prot., 2007, 28(8): 411
[1] (宋积文, 杜敏. 无铬锌铝涂层发展现状[J]. 腐蚀与防护, 2007, 28(8): 411)
[2] Wang D, Liu J G, Yin Y J, et al.Influence of additives on hydrogen evolution of Zn powders and stability of Cr-free dacromet paint[J].Corros. Sci. Prot. Technol., 2009, 21(4): 427
[2] (王典, 刘建国, 殷跃军等. 钛添加剂对无铬达克罗防护性能的影响[J]. 腐蚀科学与防护技术, 2009, 21(4): 427)
[3] Wang D, Liu J G, Yan C W, et al.Influence of additives on hydrogen evolution of Zn powders and stability of chromiun-free dacromet paint[J]. Corros. Sci. Prot. Technol., 2009, 21(2): 176
[3] (王典, 刘建国, 严川伟等. 不同添加剂对锌粉的析氢抑制及无铬达克罗稳定性的影响[J]. 腐蚀科学与防护技术, 2009, 21(2): 176)
[4] Li Q P, Ai R D, Liu J G, et al.Effect of different inhibitors on inhibition of hydrogen evolution for Zn/Al mixed powder and performance of Cr-free Dacromet[J]. Corros. Sci. Prot. Technol., 2011, 23(2): 121
[4] (李庆鹏, 艾瑞东, 刘建国等. 不同钝化剂对锌铝混合粉的析氢抑制及无铬达克罗性能影响[J]. 腐蚀科学与防护技术, 2011, 23(2):121)
[5] Jiang Y, Miao Q, Ding X, et al.Behavior of hydrogen evolution and inhibitors for Al-Zn-Si alloy flakes[J]. J. Chin. Soc. Corros. Prot.,2013, 33(1): 61)
[5] (蒋育, 缪强, 丁祥等. 片状Al-Zn-Si合金粉的析氢行为与抑制剂研究[J]. 中国腐蚀与防护学报, 2013, 33(1): 61)
[6] Shao H H, She Y N, Liu X L, et al.Preparation of chrome-free dacromet coating and evaluation of its corrosion resistance[J]. Mater. Prot., 2014, 47(11): 43
[6] (邵红红, 佘益楠, 刘雪丽等. 无铬达克罗涂层的制备及其耐蚀性能[J]. 材料保护, 2014, 47(11): 43)
[7] Zhu J M, Yao Z J, Jiang Q, et al.Microstructure and corrosion resistance of Cr-free nanocomposite Zn/Al coatings[J]. J. Chin. Soc. Corros. Prot., 2013, 33(5): 425
[7] (朱俊谋, 姚正军, 蒋穹等. 无铬纳米锌铝涂层的微观组织及腐蚀性能[J]. 中国腐蚀与防护学报, 2013, 33(5): 425)
[8] Hu H L, Li N, Cheng J N, et al.Corrosion behavior of chromium-free dacromet coating in seawater[J]. J. Alloy. Compd., 2009, 472(1/2): 219
[9] Liu J G, Gong G P, Yan C W.EIS study of corrosion behaviour of organic coating/dacromet composite systems[J]. Electrochim. Acta, 2005, 50: 3320
[10] Lu J, Liang Y, Tang S W, et al.Study on process and corrosion resistance of chrome-free dacromet coating[J]. Appl. Chem. Ind., 2011, 40(4): 612
[10] (鲁俊, 梁英, 汤尚文等. 无铬达克罗涂料工艺及耐蚀性能研究[J]. 应用化工, 2011, 40(4): 612)
[11] Guo Z C, Wang Y F, Wang N M.Corrosion resistance of various silanization pretreatment on aluminiun alloy surface[J]. J. Chin. Soc. Corros. Prot., 2007, 27(3): 172
[11] (郭增昌, 王云芳, 王汝敏. 铝合金表面不同硅烷化预处理的耐蚀性研究[J]. 中国腐蚀与防护学报, 2007, 27(3): 172)
[12] Moulder J F, Stickle W F, Sobol P E, et al.Handbook of X-ray Photo-electron Spectroscopy[M]. 2nd Ed. Eden Prairie: Physical Electronics Division, 1992
[13] Mansfeild F, Kendig M W, Tsai S.Recording and analysis of AC impedance data for corrosion studies II. Experimental approach and results[J]. Corrosion, 1982, 38(11): 570
[14] Liu J G, Gong G P, Yan C W.Electrochemical characteristics of corrosion behavior of organic/dacromet composite systems pretreated with gamma-aminopropyltriethoxysilane[J]. Surf. Coat. Technol., 2006, 200: 4967
[15] Cao C N, Zhang J Q.An Introduction to Electrochemical Impedance Spectroscopy [M]. Beijing: Science Press, 2002
[15] (曹楚南, 张鉴清. 电化学阻抗谱导论 [M]. 北京: 科学出版社, 2002)
[1] Wenjie SUI,Wenjie ZHAO,Xing ZHANG,Liguang QIN,Shusen PENG,Xuedong WU,Qunji XUE. Influence of TEOS Content on Anti-corrosion Property of Mercapto Functional Organic Silane Based Sol-gel Coatings on Copper Alloy Surface[J]. 中国腐蚀与防护学报, 2016, 36(1): 52-58.
[2] ZHAO Xiaohong, GUO Quanzhong, DU Keqin, GUO Xinghua, WANG Yong. Galvanic Corrosion Behavior of Couples of Hot Rolled Steel SS400 and Cold Rolled Steel ST12 with Two Coatings[J]. 中国腐蚀与防护学报, 2015, 35(1): 86-90.
[3] SONG Qin,,WU Junwei,,ZHANG Hui,,DU Cuiwei. Performance of Ti-based Dimensionally Stable Anode for Chromium Plating Application[J]. 中国腐蚀与防护学报, 2013, 33(6): 507-514.
[4] XIAO Wei, SHAN Dayong, CHEN Rongshi. EFFECT OF PROCESS OF ELECTROLESS PLATING ON INVESTMENT CASTING ZA93 MAGNESIUM ALLOY[J]. 中国腐蚀与防护学报, 2012, 32(2): 90-94.
[5] XING Linlin, ZHENG Yanjun, CUI Lishan, SUN Maohu, SHAO Mingzeng, LU Guiwu. PROGRESS OF WATER VAPOUR EFFECT ON GROWTH OF ALUMINA FORMING ALLOYS[J]. 中国腐蚀与防护学报, 2011, 31(6): 409-413.
[6] Hui Yu; Saying Dong; Guosheng Huang. CORROSION BEHAVIOR OF Al-BRONZE IN 3.5% NaCl SOLUTION[J]. 中国腐蚀与防护学报, 2003, 23(6): 345-349 .
[7] . FEATURE OF INTERNAL OXIDATION ANDOXIDES DISTRIBUTIPON OF Cu-Al POWDER SINTERING ALLOY[J]. 中国腐蚀与防护学报, 2001, 21(1): 59-64 .
[8] LI Lingchuan (Dept. of Materials Science & Engineering; Tsinghua University; Beijing 100084). CONSTRUCTION OF PHASE STABILITY DIAGRAMS OF QUATERNARY HOT CORROSION TYPE BASED ON CALCULATION OF TERNARY MIXED ENVIRONMENT TYPE[J]. 中国腐蚀与防护学报, 1997, 17(1): 58-62.
[9] Wang Jiajun(Tsinghua University)Sun Yufang(Central Non-Reffous Research Institute)Ye Ruizeng(University of Science and Technology Beijing). THE STRUCTURE AND HIGH TEMPERATURE STABILITY OF Ti-N FILM AS A DIFFUSION BARRIER[J]. 中国腐蚀与防护学报, 1994, 14(3): 247-251.
No Suggested Reading articles found!