Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2016, Vol. 36 Issue (1): 87-96    DOI: 10.11902/1005.4537.2014.268
Orginal Article Current Issue | Archive | Adv Search |
Influence of Pipe Parameters on Flow Field of Liquid-solid Two-phase Flow and Erosion of Pipe Bend
Wenshan PENG,Xuewen CAO()
College of Pipeline and Civil Engineering, China University of Petroleum, Qingdao 266580, China
Download:  HTML  PDF(10042KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The influence of pipebend parameters on flow field of liquid-solid two-phase flow and the erosion of pipes was studied by means of computational fluid dynamics (CFD). The relation of the erosion of pipe with the variation of the diameter, curvature-to-diameter ratio and bending angle of the pipe, as well as the particles induced erosion of the pipe wall were mainly concerned. The results show that: (1) the erosion rate varies with the varying pipeline parameters, among them the diameter is the main factor, the curvature-to-diameter ratio the next, and the bending angle the last; (2) the areas of serious erosion mainly exist in the side walls of joints as well as the outside of the joints between export of straight pipe and elbow. However, the location of the most serious erosion is uncertain, which will change along with the variation of the bend pipe parameters.

Key words:  liquid-solid two-phase      pipe bend diameter      curvature-to-diameter ratio      bendingangle      trajectory      Stokes number     

Cite this article: 

Wenshan PENG,Xuewen CAO. Influence of Pipe Parameters on Flow Field of Liquid-solid Two-phase Flow and Erosion of Pipe Bend. Journal of Chinese Society for Corrosion and protection, 2016, 36(1): 87-96.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2014.268     OR     https://www.jcscp.org/EN/Y2016/V36/I1/87

Fig.1  Geometry of pipe bend and grid division
Fig.2  Erosion rate and wall shear stress vs grid numbers
Fig.3  Pipe bend diameter vs erosion rate curve
Fig.4  Flow fields in the cross sections of pipe bends with different diameters: (a) 40 mm, (b) 100 mm, (c) 200 mm,(d) 300 mm, (e) 400 mm, (f) 500 mm, (g) 600 mm
Fig.5  Changes of particle trajectory and erosion rate with the diameter of pipe bend: (a) 40 mm, (b) 100 mm, (c) 200 mm, (d) 300 mm, (e) 400 mm, (f) 500 mm, (g) 600 mm
Fig.6  Erosion rate vs curvature-to-diameter ratio curves
Fig.7  Flow fields in the cross sections of pipe bends with different curvature-to-diameter ratios: (a) R/D=1.5, (b) R/D=2, (c) R/D=2.5, (d) R/D=3, (e) R/D=4, (f) R/D=5
Fig.8  Changes of particle trajectory and erosion rate with the curvature-to-diameter ratio of pipe bend: (a) R/D=1.5, (b) R/D=2, (c) R/D=2.5, (d) R/D=3, (e) R/D=4, (f) R/D=5
Fig.9  Bending angles vs erosion rate curve
Fig.10  Flow fields in the cross sections of pipe bends with different bending angles: (a) 45°, (b) 90°, (c)180°
Fig.11  Changes of particle trajectory and erosion rate with the bending angle of pipe bend: (a) 45°, (b) 90°, (c) 180°
[1] Dai Z, Shen S M, Ding G Q.Erosion-corrosion and protection of metals in fluids with solid particles[J]. Corros. Prot., 2007, 28(2): 86
[1] (代真, 沈士明, 丁国铨. 金属在固液两相流体中的冲刷腐蚀及其防护[J]. 腐蚀与防护, 2007, 28(2): 86)
[2] Zhu J, Zhang Q B, Chen Y, et al.Progress of study on erosion-corrosion[J]. J. Chin. Soc. Corros. Prot., 2014, 34(3): 199
[2] (朱娟, 张乔斌, 陈宇等. 冲刷腐蚀的研究现状[J]. 中国腐蚀与防护学报, 2014, 34(3): 199)
[3] Wang S M, Liu H X, Zhang R, et al.Numerical simulations of sand erosion in pipelines and evaluations of solid particle erosion equations[J]. Ocean Eng., 2014, 32(1): 49
[3] (王思邈, 刘海笑, 张日等. 海底管道沙粒侵蚀的数值模拟及侵蚀公式评价[J]. 海洋工程, 2014, 32(1): 49)
[4] Lian Z H, Chen X H, Lin T J, et al.Study on erosion mechanism of bending joint in blooey line[J]. J. Southwest Petrol. Univ.(Sci. Technol. Ed.), 2014, 36(1): 150
[4] (练章华, 陈新海, 林铁军等. 排砂管线弯接头的冲蚀机理研究[J].西南石油大学学报 (自然科学版), 2014, 36(1): 150)
[5] Zhang S F, Cao H M, Liu Y, et al.Numerical simulation of liquid-solid two-phase flow and erosion-collision in a syphon[J]. J. Hebei Univ. Technol., 2008, 37(3): 48
[5] (张少峰, 曹会敏, 刘燕等. 弯管中液固两相流及壁面碰撞磨损的数值模拟[J]. 河北工业大学学报, 2008, 37(3): 48)
[6] Liu J J, Lin Y Z, Tian X L, et al.Numerical simulation of flow induced corrosion of carbon steel in liquid/solid two-phase flow system[J]. J. Chem. Ind. Eng., 2004, 55(2): 231
[6] (刘景军, 林玉珍, 田兴玲等. 碳钢在固/液两相流条件下流动腐蚀的数值模拟[J]. 化工学报, 2004, 55(2): 231)
[7] Wang K, Li X F, Wang Y, et al.Numerical prediction of the maximum erosion location in liquid-solid two-phase flow of the elbow[J]. J. Eng. Thermophys., 2014, 35(4): 691
[7] (王凯, 李秀峰, 王跃等. 液固两相流中固体颗粒对弯管冲蚀破坏的位置预测[J]. 工程热物理学报, 2014, 35(4): 691)
[8] Oka Y I, Okamura K, Yoshida T.Practical estimation of erosion damage caused by solid particle impact: Part 1: Effects of impact parameters on a predictive equation[J]. Wear, 2005, 259(1): 95
[9] Oka Y I, Yoshida T.Practical estimation of erosion damage caused by solid particle impact: Part 2: Mechanical properties of materials directly associated with erosion damage[J]. Wear, 2005, 259(1): 102
[10] DNV RP-O501. Erosive wear in piping systems[S], 2007
[11] Zhang Y, Reuterfors E P, McLaury B S, et al. Comparison of computed and measured particle velocities and erosion in water and air flows[J]. Wear, 2007, 263(1): 330
[12] Zeng L, Zhang G A, Guo X P.Erosion-corrosion at different locations of X65 carbon steel elbow[J]. Corros. Sci., 2014, 85: 318
[13] Zhang G A, Zeng L, Huang H L, et al.A study of flow accelerated corrosion at elbow of carbon steel pipeline by array electrode and computational fluid dynamics simulation[J]. Corros. Sci., 2013, 77: 334
[14] Stack M M, Abdelrahman S M.A CFD model of particle concentration effects on erosion-corrosion of Fe in aqueous conditions[J]. Wear, 2011, 273(1): 38
[15] Stack M M, Corlett N, Zhou S.A methodology for the construction of the erosion-corrosion map in aqueous environments[J]. Wear, 1997, 203: 474
[16] Morsi S A, Alexander A J.An investigation of particle trajectories in two-phase flow systems[J]. J. Fluid Mech., 1972, 55(2): 193
[17] Ding Y G, Wang H L, Guo X P, et al.Erosion-corrosion of metals and alloys in liquid-solid phase[J]. Mater. Prot., 2001, 34(11): 16
[17] (丁一刚, 王慧龙, 郭兴蓬等. 金属在液固两相流中的冲刷腐蚀[J]. 材料保护, 2001, 34(11): 16)
[18] Huser A, Kvernvold O.Prediction of sand erosion in process and pipe components [A]. Proc 1st North American Conference on Multiphase Technology[C]. Banff, 1998, 31: 217
[19] Parsi M, Najmi K, Najafifard F, et al.A comprehensive review of solid particle erosion modeling for oil and gas wells and pipelines applications[J]. J. Nat. Gas Sci. Eng., 2014, 21: 850
[20] Forder A, Thew M, Harrison D.A numerical investigation of solid particle erosion experienced within oilfield control valves[J]. Wear, 1998, 216(2): 184
[21] Grant G, Tabakoff W.Erosion prediction in turbomachinery resulting from environmental solid particles[J]. J. Aircraft, 1975, 12(5): 471
[22] Lin Z, Ruan X, Zhu Z, et al.Numerical study of solid particle erosion in a cavity with different wall heights[J]. Powder Technol., 2014, 254: 150
[23] Ji S M, Ma B L, Tan D P.Numerical analysis of soft abrasive flow in structured restraint flow passage[J]. Opt. Precis. Eng., 2011, 19(9): 2092
[23] (计时鸣, 马宝丽, 谭大鹏. 结构化表面环境下软磨粒流的流场数值分析[J]. 光学精密工程, 2011, 19(9): 2092)
[24] Du M J, Zhang Z T, Zhang C Y, et al.Analysis of erosion fracture stress of 90? elbow inmulti-phase mixed transmission pipeline[J].Oil Gas Storage Transp., 2011, 30(6): 427
[24] (杜明俊, 张振庭, 张朝阳等. 多相混输管道90°弯管冲蚀破坏应力分析[J]. 油气储运, 2011, 30(6): 427)
[25] Fu L, Gao B J.Numerical simulation of the flow field and wear prediction of the elbow of coal-oil slurry transporting pipelines[J].Chem. Eng. Mach., 2009, 36(5): 463
[25] (付林, 高炳军. 油煤浆输送管道弯管部位流场的数值模拟与磨损预测[J]. 化工机械, 2009, 36(5): 463)
[1] Wenshan PENG,Xuewen CAO. Analysis on Erosion of Pipe Bends Induced by Liquid-solid Two-phase Flow[J]. 中国腐蚀与防护学报, 2015, 35(6): 556-562.
No Suggested Reading articles found!