Please wait a minute...
中国腐蚀与防护学报  2007, Vol. 27 Issue (1): 60-64     
  综述 本期目录 | 过刊浏览 |
微生物腐蚀研究方法中的表面分析技术
王伟; 王佳; 徐海波; 李相波
中国海洋大学化学化工学院
SURFACE ANALYSIS METHODS USED INMICROBIALLY INFLUENCED CORROSION STUDY
;;;
中国海洋大学化学化工学院
全文: PDF(965 KB)  
摘要: 综述了当前微生物腐蚀(MIC)研究中应用的表面分析技术.这些技术包括:傅利叶红外光谱、扫描电镜、环境扫描电镜,原子力显微镜和扫描激光共聚焦显微镜.介绍了可对材料表面微生物进行观察的表面荧光显微镜在微生物腐蚀和微生物膜研究中的应用.总结了各种表面分析技术的特点和最新应用.一种在微生物腐蚀研究中使用的新型材料表征技术“飞行时间二次离子质谱分析”在文中也作了介绍.
关键词 微生物腐蚀微生物膜表面分析技术    
Abstract:This paper reviews the application of surface analysis methods used in the microbially influenced corrosion (MIC) study.These methods include FTIR spectroscopy,SEM,ESEM,AFM and CLSM.Epifluorescent microscopy used in microbiology and biofilm study is included in this paper.Some state-of-the-art technique time-of-flight-secondary-ion mass spectrometry is introduced in this paper.
Key wordsmicrobially influenced corrosion    biofilm    surface analysis technique
收稿日期: 2005-09-25     
ZTFLH:  TG174  
通讯作者: 王伟      E-mail: wwei@ouc.edu.cn

引用本文:

王伟; 王佳; 徐海波; 李相波 . 微生物腐蚀研究方法中的表面分析技术[J]. 中国腐蚀与防护学报, 2007, 27(1): 60-64 .
. SURFACE ANALYSIS METHODS USED INMICROBIALLY INFLUENCED CORROSION STUDY. J Chin Soc Corr Pro, 2007, 27(1): 60-64 .

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2007/V27/I1/60

[1]Heber J R,Sevenson R,Boldman O.Infrared spectroscopy as ameans for identification of bacteria[J].Science,1952,116:111-112
[2]Norris K P.Infrared spectroscopy and its application to microbiology[J].Hygiene,1959,57:326-345
[3]J櫣rgen Schmitt,Hans-Curt Flemming.FTIR-spectroscopy in mi-crobial and material analysis[J].International Biodeterioration&Biodegradation,1998,41:1-11
[4]Nivens D E,Schmitt J.Multichannel ATR/FT-IR spectrometer foron-line examination of microbial biofilms[J].Appl.Spectroscopy,1993,5:668-671
[5]Schmitt J,Flemming HC.Water binding in biofilms[J].Water Sci.Technol.,1999,39:77-82
[6]Schmitt J,Nivens D,White D C,et al.Changes of biofilm propertiesin response to sorbed substances-an FTIR-ARTstudy[J].WaterSci.Technol.,1995,32:149-155
[7]Olinger J M,Griffiths P R.Effects of sample dilution and particlesize/morphology on diffuse reflection spectra of carbohydrate systemsin the near-and mid-infrared[J].Appl.Spectroscopy,1993,47(6):687-694
[8]Nivens D E,Nichols P D,Henson J M,et al.Reversible accelerationof the corrosion of AISI304 stainless steel exposed to seawater in-duced by growth and secretions of the marine bacterium vibrio natr-iegens[J].Corrosion,1986,42(4):204-209
[9]Tadashi Matsunaga,Tae-kyu Lim.Electrochemical prevention ofbiofouling[J].Electrochemistry,2000,68(11):847-852
[10]Smith J J,McFeters G A.Mechanisms of INT(2-(4-iodophe-nyl)-3-(4-nitrophenyl)-5-phenyltetrazolium chloride),and CTC(5-cyano-2,3-ditolyltetrazolium chloride)reduc-tion in Escherichia coli K-12[J].J.Microbiological Methods,1997,29:161-175
[11]Schaule G,Flemming HC,Ridgway HF.Use of5-cyano-2,3-ditolyltetrazolium chloride for quantifying planktonic and sessile re-spiring bacteria in drinking water[J].Appl.Environ.Microbiol.,1993,59:3850-3857
[12]Rodriguez G G,Phipps D,Ishiguro K,et al.Use of a fluorescentredox probe for direct visualization of actively respiring bacteria[J].Appl.Environ.Microbiol.,1992,58:1801-1808
[13]Boulos L,Pr啨vost M,Barbeau B,et al.LIVE/DEAD(BacLightTM:application of a newrapid staining method for direct enumeration ofviable and total bacteria in drinking water[J].J.MicrobiologicalMethods,1999,37:77-86
[14]Ramalho R,Cunha J,Teixeira P,et al.Improved methods for the e-numeration of heterotrophic bacteria in bottled mineral waters[J].J.Microbiological Methods,2001,44:97-103
[15]Okochi M,Taguchi T,Tauboi M,et al.Fluorometric observation ofviable and dead adhering diatoms using TO-PRO-1 iodide andits application to the estimation of electrochemical treatment[J].Appl.Microbiol.Biotechnol.,1999,51:364-369
[16]Hobbie J E,Daly R J,Jaspers S.Use of nuclepore filters for count-ing bacteria by fluorescent microscopy[J].Appl.Environ.Microbi-ol.,1977,33:1225-1228
[17]Porter K G,Feig Y S.The use of DAPI for identifying and countingaquatic microflora[J].Limnol Oceanogr,1980,25:943-948
[18]Lisle J T,Broadaway S C,Prescott A M,et al.Effects of starvationon physiological activity and chlorine disinfection resistance inEscherichia coli O157:H7[J].Appl.Environ.Microbiol.,1998,64:4658-4662
[19]Chang Y C,Puil M L,Biggerstaff J,et al.Direct estimation of bio-film density on different pipe material coupons using a specificDNA-probe[J].Molecular and Cellular Probes,2003,17:237-243
[20]Thien-Fah C Mah,George A O’Toole.Mechanisms of biofilm re-sistance to antimicrobial agents[J].Trends in Microbiology,2001,9:34-39
[21]Chang HT,Rittmann B E.Biofilm loss during sample preparationfor scanning electron microscopy[J].Wat.Res.,1986,20:1451-1456
[22]Little B,Wagner P,Ray R,et al.Biofilms:an ESEM evaluation ofartifacts introduced during SEM preparation[J].J.Ind.Microbi-al.,1991,8:213-222
[23]Sutton N A,Hughes N,Handley P S.A comparison of conventionalSEM techniques,low temperature SEM and the electroscan wetscanning electron microscope to study the structure of a biofilm ofStreptococcus crista CR3[J].J.Appl.Bacteriol.,1994,76:448-454
[24]Patricia S Guiamet,Sandra G,G幃mez de Saravia,H啨ctor A Videla.An innovative method for preventing biocorrosion through microbialadhesion inhibition[J].International Bioddeterioration&Biode-gradeation,1999,43:31-35
[25]Christopher J G.The application of the environmental scanning e-lectron microscope in biological and materials science[J].Biologyof Cell,1998,90:249
[26]Silyn-Roberts G,Lewis G.Atechnique in confocal laser microsco-py for establishing biofilm coverage and thickness[J].Water Sci.Technol.,1997,36:117-124
[27]Neu T R,Lawrence J R.Development and structure of microbialbiofilms in river water studied by confocal laser scanning microsco-py[J].FEMS Microbiology Ecology,1997,24:11-25
[28]Lawrence J R,Neu TR,Swerhone G D W.Application of multipleparameter imaging for the quantification of algal,bacterial and ex-opolymer components of microbial biofilms[J].J.MicrobiologicalMethods,1998,32:253-261
[29]Stewart P S,Murga R,Srinivasan R,et al.Biofilm structural hetero-geneity visualized by three microscopic methods[J].Wat.Res.,1995,29:2006-2009
[30]Beech I B.The potential use of atomic force microscopy for studyingcorrosion of metals in the presence of bacteria biofilms-an over-view[J].International Biodeterioration&Biodegradation,1996,43:141-149
[31]Beech I B,Cheung C W S,Johnson D B,et al.Comparative studiesof bacterial biofilms on steel surfaces using atomic force microscopyand environmental scanning electron microscopy[J].Biofouling,1996,10:65-77
[32]Xu L C,Fang HHP,Chan K Y.Atomic force microscopy study ofmicrobiologically influenced corrosion of mild steel[J].J.Electro-chem.Soc.,1999,146:4455-4460
[33]Geiser M,Avci R,Lewandowski Z.Microbially initiated pitting on316L stainless steel[J].International Biodeterioration&Biodegra-dation,2002,49:235-243
[34]Xu L C,Chan K Y,Fang H H P.Application of atomic force mi-croscopy in the study of microbiologically influenced corrosion[J].Mater.Characterization,2002,48:195-203
[35]Goddard D T,Steele A,Beech I B.Towards in situ atomic force mi-croscopy imaging of biofilm growth on stainless steel[J].ScanningMicrosc.,1996,10:983-988
[36]Telegdi J,Keresztes Zs,Palinkas G,et al.Microbially influencedcorrosion visualized by atomic force microscopy[J].Appl.Phys.A,1998,66:S639-S642
[37]Dufr毢ne Y F.Application of atomic force microscopy to microbialsurfaces:from reconstituted cell surface layers to living cells[J].Micron,2001,32:153-165
[38]Surman B,Walker J T,Goddard D T,et al.Comparison of micro-scope techniques for the examination of biofilms[J].J.Microbio-logical Methods,1996,25:57-70
[39]From http://www.germantech.com.cn/docc/ion-tof.htm
[40]Poleunis C,Rubio C,Comp埁re C,et al.TOF-SIMS chemical map-ping study of protein adsorption onto stainless steel surfaces im-mersed in saline aqueous solutions[J].Appl.Surf.Sci.,2003,(203-204):693-697
[41]Poleunis C,Comp埁re C,Bertrand P.Time-of-flight secondary ionmass spectrometry:characterization of stainless steel surface im-mersed in natural seawater[J].J.Microbiological Methods,2002,48:195-205
[42]Shi X,Avci R,Geiser M,et al.Comparative study in chemistry ofmicrobially and electrochemically induced pitting of 316L stainlesssteel[J].Corros.Sci.,2003,45:2577-2595
[43]Shi X,Avci R,Lewandowski Z.Electrochemistry of passive metalsmodified by manganese oxides deposited by Leptothrix discophora:two-step model verified by TOF-SIMS[J].Corros.Sci.,2002,44:1027-1045
[44]Shi X,Avci R,Lewandowski Z.Microbially deposited manganeseand iron oxides on passive metals-their chemistry and conse-quences for material performance[J].Corrosion,2002,58:728-738
[1] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[2] 张雨轩, 陈翠颖, 刘宏伟, 李伟华. 铝合金霉菌腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[3] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[4] 王玉, 吴佳佳, 张盾. 海水环境中异化铁还原菌所致金属材料腐蚀的研究进展[J]. 中国腐蚀与防护学报, 2020, 40(5): 389-397.
[5] 胥聪敏,罗立辉,王文渊,赵苗苗,田永强,宋鹏迪. D-tyrosine对碳钢表面铁细菌生物膜的杀菌增强作用机理研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 63-69.
[6] 卫晓阳,杨丽景,吕战鹏,郑必长,宋振纶. 磁场对纯Cu微生物腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 484-494.
[7] 吴堂清,周昭芬,王鑫铭,张德闯,尹付成,孙成. 微生物致裂的热力学和动力学分析[J]. 中国腐蚀与防护学报, 2019, 39(3): 227-234.
[8] 史显波,杨春光,严伟,徐大可,闫茂成,单以银,杨柯. 管线钢的微生物腐蚀[J]. 中国腐蚀与防护学报, 2019, 39(1): 9-17.
[9] 李鑫,陈旭,宋武琦,杨佳星,吴明. pH值对X70钢在海泥模拟溶液中微生物腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 565-572.
[10] 管方, 翟晓凡, 段继周, 侯保荣. 阴极极化对硫酸盐还原菌腐蚀影响的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(1): 1-10.
[11] 梅朦, 郑红艾, 陈惠达, 张鸣, 张大全. 硫酸盐还原菌对Cu在循环冷却水中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(6): 533-539.
[12] 陈菊娜,吴佳佳,王鹏,张盾. 脱硫弧菌和溶藻弧菌对船体结构材料907钢海水腐蚀行为的影响研究[J]. 中国腐蚀与防护学报, 2017, 37(5): 402-410.
[13] 刘宏伟,刘宏芳. 铁氧化菌引起的钢铁材料腐蚀研究进展[J]. 中国腐蚀与防护学报, 2017, 37(3): 195-206.
[14] 吕亚林,郑碧娟,刘宏伟,熊福平,刘宏芳,胡裕龙. 磁场对硫酸盐还原菌生物膜在304不锈钢表面吸附性能的影响[J]. 中国腐蚀与防护学报, 2016, 36(6): 652-658.
[15] 聂鸳鸳, 段继周, 杜敏, 侯保荣. 天然海水中NaN3对316L不锈钢表面微生物膜催化阴极氧还原的影响[J]. 中国腐蚀与防护学报, 2014, 34(4): 359-365.