Please wait a minute...
中国腐蚀与防护学报  2019, Vol. 39 Issue (1): 83-88    DOI: 10.11902/1005.4537.2018.075
  研究报告 本期目录 | 过刊浏览 |
3种不同Cr含量Co-20Re-Cr合金在1000和1100 ℃的高温氧化行为
王玲1,向军淮1,2(),张洪华1,2,覃宋林1
1. 江西科技师范大学材料与机电学院 南昌 330013
2. 江西科技师范大学 江西省材料表面工程重点实验室 南昌 330013
High Temperature Oxidation Behavior of Three Co-20Re-xCr Alloys in 3.04×10-5 Pa Oxygen at 1000 and 1100 ℃
Ling WANG1,Junhuai XIANG1,2(),Honghua ZHANG1,2,Songlin QIN1
1. School of Materials and Mechanical & Electrical Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, China
2. Jiangxi Key Laboratory of Surface Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, China
全文: PDF(10055 KB)   HTML
摘要: 

研究了Co-20Re-20Cr, Co-20Re-25Cr, Co-20Re-30Cr 3种三元合金在1000和1100 ℃下3.04×10-5 Pa氧气中氧化24 h的恒温氧化行为。由于表面形成的氧化膜不能阻止合金中Re以ReO3形式向外挥发,3种合金都出现了明显的氧化失重现象,Co-20Re-20Cr和Co-20Re-25Cr合金在1100 ℃时失重更为明显。在两种温度条件下,Co-20Re-20Cr和Co-20Re-25Cr合金的氧化动力学曲线符合抛物线规律,而Co-20Re-30Cr合金的则不符合抛物线规律。3种不同Cr含量合金形成的氧化膜分层明显,最外层是较厚的CoO层,次外层是很厚且疏松多孔的CoCr2O4层,内层为极薄的不完全连续但具有一定保护作用的Cr2O3层。随着Cr含量的增加,形成的Cr2O3层变得更为连续和完整,因此合金的抗氧化性能随之提高,即Co-20Re-30Cr合金的抗高温氧化性能最好。

关键词 Co-Re-Cr合金恒温氧化抗高温氧化性能    
Abstract

The iso-thermal oxidation behavior of Co-20Re-20Cr, Co-20Re-25Cr, and Co-20Re-30Cr alloys in 3.04×10-5 Pa oxygen at 1000 and 1100 ℃ for 24 h was investigated. The three alloys show continuous mass loss due to the evaporation of Re element in the form of ReO3. The mass loss is more obvious at 1100 ℃ for Co-20Re-20Cr and Co-20Re-25Cr alloys. The oxidation kinetics at 1000 and 1100 ℃ of Co-20Re-20Cr and Co-20Re-25Cr obeys parabolic law, while that of Co-20Re-25Cr is irregular. Correspondingly, the scales formed on the three alloys with different Cr content have a stratified structure. The outermost layer is composed of CoO, while the inner layer, which is very thick and porous, is composed of CoCr2O4. However, the very thin innermost layer composed of Cr2O3 is not very continuous and complete, accounting for its limited role for protection. With the increase of Cr content, the oxidation resistance of Co-20Re-xCr alloys is enhanced to a certain extent due to the formation of a Cr2O3 layer with better continuity and integrity. Furthermore, when the Cr content reaches up to 30%, the oxidation resistance of the alloy was improved greatly.

Key wordsCo-Re-Cr    iso-thermal oxidation    high temperature oxidation resistance
收稿日期: 2018-05-30     
ZTFLH:  TG146.418  
基金资助:国家自然科学基金(51701054);江西省教育厅科技项目(GJJ160770)
通讯作者: 向军淮     E-mail: xiangjunhuai@163.com
Corresponding author: Junhuai XIANG     E-mail: xiangjunhuai@163.com
作者简介: 王玲,女,1994年生,硕士生

引用本文:

王玲,向军淮,张洪华,覃宋林. 3种不同Cr含量Co-20Re-Cr合金在1000和1100 ℃的高温氧化行为[J]. 中国腐蚀与防护学报, 2019, 39(1): 83-88.
Ling WANG, Junhuai XIANG, Honghua ZHANG, Songlin QIN. High Temperature Oxidation Behavior of Three Co-20Re-xCr Alloys in 3.04×10-5 Pa Oxygen at 1000 and 1100 ℃. Journal of Chinese Society for Corrosion and protection, 2019, 39(1): 83-88.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2018.075      或      https://www.jcscp.org/CN/Y2019/V39/I1/83

AlloyCoReCr
Co-20Re-20CrCo-rich phase62.5013.2524.25
Re-rich phase52.5131.0516.44
Co-20Re-25CrCo-rich phase58.6316.0125.37
Re-rich phase36.4937.8025.72
Co-20Re-30CrCo-rich phase58.2215.1626.62
Re-rich phase33.4636.8829.66
表1  Co-20Re-xCr (x=20,25,30) 合金的相组成及其化学成分
图1  Co-20Re-20Cr合金在1000和1100 ℃恒温氧化24 h的动力学曲线和动力学抛物线图
图2  Co-20Re-25Cr合金在1000和1100 ℃恒温氧化24 h的动力学曲线和动力学抛物线图
图3  Co-20Re-30Cr合金在1000和1100 ℃恒温氧化24 h的动力学曲线和动力学抛物线图
Alloy1000 ℃1100 ℃
Co-20Re-20Cr6.83×10-9 (0~1440 min)1.57×10-8 (0~1440 min)
Co-20Re-25Cr3.73×10-9 (0~1440 min)7.37×10-9 (0~1440 min)
Co-20Re-30Cr1.01×10-9 (0~36 min)2.29×10-11 (0~150 min)
1.92×10-10 (36~500 min)4.24×10-12 (150~500 min)
2.43×10-10 (500~1440 min)2.34×10-10 (500~1440 min)
表2  Co-20Re-xCr (x=20,25,30) 合金在1000和1100 ℃恒温氧化24 h的近似抛物线速率常数
图4  Co-20Re-xCr (x=20,25,30) 合金在1000和1100 ℃ 恒温氧化24 h后的表面形貌
图5  Co-20Re-xCr (x=20, 25, 30) 合金在1000和1100 ℃ 恒温氧化24 h后的截面形貌
图6  Co-20Re-xCr (x=20,25,30) 合金氧化膜生长机制示意图
[1] Zhang Z G, Gesmundo F, Hou P Y, et al. Criteria for the formation of protective Al2O3 scales on Fe-Al and Fe-Cr-Al alloys [J]. Corros. Sci., 2006, 48: 741
[2] Mikkelsen L, Larsen P H, Linderoth S. High temperature oxidation of Fe22Cr-alloy [J]. J. Therm. Anal. Calorim., 2001, 64: 879
[3] Xiao B, Xiang J H, Zhang H H. Cyclic and static oxidation behavior of Fe-Cu-Ni-Al alloy at 900 ℃ [J].J.Chin. Soc. Corros. Prot., 2017, 37: 69
[3] 肖斌, 向军淮, 张洪华. 四元Fe-Cu-Ni-Al合金900 ℃下的恒温及循环氧化行为 [J]. 中国腐蚀与防护学报, 2017, 37: 69
[4] Ding Q Q, Yu Q, Li J X, et al. Research progresses of rhenium effect in nickel based superalloys [J]. Mater. Rev., 2018, 32: 110
[4] 丁青青, 余倩, 李吉学等. 铼在镍基高温合金中作用机理的研究现状 [J]. 材料导报, 2018, 32: 110
[5] Perepezko J H. The hotter the engine, the better [J]. Science, 2009, 326: 1068
[6] Sato J, Omori T, Oikawa K, et al. Cobalt-base high-temperature alloys [J]. Science, 2006, 312: 90
[7] R?sler J, Mukherji D, Baranski T. Co-Re-based alloys: A new class of high temperature materials? [J]. Adv. Eng. Mater., 2010, 9: 876
[8] Gorr B, Christ H J, Mukherji D, et al. Thermodynamic calculations in the development of high-temperature Co-Re-based alloys [J]. J. Alloy. Compd., 2014, 582: 50
[9] Gorr B, Wang L, Burk S, et al. High-temperature oxidation behavior of Mo-Si-B-based and Co-Re-Cr-based alloys [J]. Intermetallics, 2014, 48: 34
[10] Niu Y, Cao Z Q, Gesmundo F, et al. Grain size effects on the oxidation of two ternary Cu-Ni-20wt.% Cr alloys at 700-800 ℃ in 1 atm O2 [J]. Corros. Sci., 2003, 45: 1125
[11] Xiang J H, Niu Y, Gesmundo F. The oxidation of two ternary Fe-Cu-10 at.% Al alloys in 1 atm of pure O2 at 800-900 ℃ [J]. Corros. Sci., 2005, 47: 1493
[12] Wang L, Gorr B, Christ H J, et al. Microstructure and oxidation mechanism evolution of Co-17Re-25Cr-2Si in the temperature range 800-1,100 ℃ [J]. Oxid. Met., 2015, 83: 465
[13] Li T F. High Temperature Oxidation and Hot Corrosion of Metals [M]. Beijing: Chemical Industry Press, 2003
[13] 李铁藩. 金属高温氧化和热腐蚀 [M]. 北京: 化学工业出版社, 2003
[14] Gorr B, Trindade V, Burk S, et al. Oxidation behaviour of model cobalt-rhenium alloys during short-term exposure to laboratory air at elevated temperature [J]. Oxid. Met., 2009, 71: 157
[15] Gorr B, Burk S, Trindade V B, et al. The effect of pre-oxidation treatment on the high-temperature oxidation of Co-Re-Cr model alloys at laboratory air [J]. Oxid. Met., 2010, 74: 239
[1] 徐勋虎,何翠群,向军淮,王玲,张洪华,郑晓冬. Co-20Re-25Cr-1Si合金在0.1 MPa纯O2中的高温氧化行为[J]. 中国腐蚀与防护学报, 2020, 40(1): 75-80.
[2] 陈浩,陈庆,辛丽,时龙,朱圣龙,王福会. DD98M纳米晶AlSi渗层制备及抗高温腐蚀性能研究[J]. 中国腐蚀与防护学报, 2019, 39(1): 59-67.
[3] 肖斌,向军淮,张洪华. 四元Fe-Cu-Ni-Al合金900 ℃下的恒温及循环氧化行为[J]. 中国腐蚀与防护学报, 2017, 37(1): 69-73.
[4] 张泽海,孟杰. 一种镍基单晶高温合金的恒温氧化行为[J]. 中国腐蚀与防护学报, 2010, 30(4): 337-340.
[5] 王东生 田宗军 陈志勇 沈理达 吴红艳 张平则 刘志东 徐重 黄因慧. TiAl合金表面抗高温氧化涂层研究[J]. 中国腐蚀与防护学报, 2009, 29(1): 1-8.
[6] 金光熙; 乔利杰; 高克玮; 桥本健纪 ; 褚武扬 . Al60Mn13Ti25V2金属间化合物的高温氧化行为研究[J]. 中国腐蚀与防护学报, 2004, 24(3): 129-134 .