Please wait a minute...
中国腐蚀与防护学报  2016, Vol. 36 Issue (3): 273-280    DOI: 10.11902/1005.4537.2015.137
  研究报告 本期目录 | 过刊浏览 |
纳米ZnS增强聚苯胺复合涂层的性能研究
钱超1,2,云虹1(),张志国1,徐群杰1
1. 上海电力学院 环境与化学工程学院 上海 200090
2. 上海电力学院 上海市电力材料防护与新材料重点实验室 上海 200090
Anticorrosive Performance of Nano ZnS Reinforced Polyaniline Coatings on Q235 Carbon Steel
Chao QIAN1,2,Hong YUN1(),Zhiguo ZHANG1,Qunjie XU1
1. College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
2. Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, China
全文: PDF(2186 KB)   HTML
摘要: 

采用水热法制备纳米ZnS,与化学氧化法制备的聚苯胺 (PANI) 按不同比例混合,制得纳米ZnS改性PANI复合物,将其涂覆于Q235碳钢表面制备复合涂层。采用SEM,AFM,XRD和FTIR表征纳米ZnS改性PANI复合涂层的表面形貌和结构,利用动电位极化和EIS研究复合涂层浸泡在3.5% (质量分数) NaCl溶液中的腐蚀电化学行为。结果表明,纳米ZnS改性PANI复合涂层中ZnS和PANI二者均匀分散,显著提高其耐蚀性能。当ZnS和PANI的质量比为1:1时,性能最优,在3.5%NaCl溶液中浸泡7 d,复合涂层的保护效率高达99.9%;浸泡30 d后复合涂层的表面形貌发生变化,仍为致密的保护膜,对基底材料具有较好的保护作用,使其免受溶液离子的侵蚀。

关键词 聚苯胺纳米ZnS分散腐蚀防护    
Abstract

Nano-ZnS was prepared by hydrothermal method and polyaniline was prepared by chemical oxidation respectively, which then were blended to prepare a series composite materials of polyaniline modified by nano-ZnS. Finally the relevant composite coatings were applied on Q235 carbon steel. The acquired composite materials and coatings were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The electrochemical corrosion performance of the composite coatings in 3.5% (mass fraction) NaCl solution was investigated by potentiodynamic polarization and electrochemical impedance. The results showed that the nano-ZnS was uniformly dispersed in the polyaniline matrix and therewith the anticorrosive performance of the coatings was improved significantly. Among others the coating with 50% (mass fraction) ZnS exhibited the best anticorrosive performance with a protection efficiency 99.9% after immersion in 3.5%NaCl solution for 7 d. Besides, after immersion for 30 d, the coating surface morphology changed obseriously, but the coating is still dense and could provide good protectiveness for the substrate material even up to 30 d.

Key wordspolyaniline    nano-ZnS    disperse    corrosion protection
收稿日期: 2015-09-24     
基金资助:国家自然科学基金项目(21003089),上海市教委科创项目 (13YZ103) 和上海市科学技术委员会项目(14DZ2261000)资助

引用本文:

钱超,云虹,张志国,徐群杰. 纳米ZnS增强聚苯胺复合涂层的性能研究[J]. 中国腐蚀与防护学报, 2016, 36(3): 273-280.
Chao QIAN, Hong YUN, Zhiguo ZHANG, Qunjie XU. Anticorrosive Performance of Nano ZnS Reinforced Polyaniline Coatings on Q235 Carbon Steel. Journal of Chinese Society for Corrosion and protection, 2016, 36(3): 273-280.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2015.137      或      https://www.jcscp.org/CN/Y2016/V36/I3/273

图1  纳米ZnS,PANI和纳米ZnS/PANI复合材料的XRD谱
图2  纳米ZnS,PANI和纳米ZnS/PANI复合材料的FTIR谱
图3  纳米ZnS的AFM像和粒径分布图
图4  PANI及50%-ZnS/PANI在3.5%NaCl溶液中浸泡30 d前后的SEM像
图5  不同样品在3.5%NaCl溶液中浸泡7和30 d后的动电位极化曲线
Sample Ecorr / V Icorr / Acm-2 η
Q235 Carbon steel -0.704 6.91×10-6 ---
PANI coating -0.321 1.89×10-7 97.3%
50%-ZnS/PANIcomposite coating -0.221 4.23×10-9 99.9%
33%-ZnS/PANIcomposite coating -0.287 8.12×10-9 99.8%
25%-ZnS/PANIcomposite coating -0.326 6.91×10-8 99.0%
表1  不同样品在3.5%NaCl溶液中浸泡7 d后的电化学参数及相应的保护效率
图6  不同涂层在3.5%NaCl溶液中的开路电位随浸泡时间的变化
图7  不同涂层在3.5%NaCl溶液中浸泡不同时间后的Nyquist图
图8  Q235碳钢的Bode图和50%-ZnS/PANI复合涂层在不同浸泡时间下的Bode图
Coating Rc / Ωcm2 Cc / Fcm-2 Rct / Ωcm2 Cdt / Fcm-2
PANI 2.89×106 7.23×10-8 2.93×106 9.54×10-5
50%-ZnS/PANI composite 3.97×108 1.05×10-10 4.79×108 2.93×10-7
33%-ZnS/PANI composite 8.82×107 2.63×10-9 8.87×107 4.57×10-6
25%-ZnS/PANI composite 9.13×107 4.43×10-9 9.36×107 5.29×10-6
表2  涂覆不同涂层的Q235碳钢电极在3.5%NaCl溶液中浸泡30 d后的阻抗拟合参数
图9  涂覆不同涂层的Q235碳钢试样的Rc和Cc随时间的变化曲线
[1] Gomez H, Ram MK, Alvi F, et al. Novel synthesis, characterization,corrosion inhibition properties of nanodiamond-polyaniline films [J]. J. Phys. Chem., 2010, 114(44)C: 18797
[2] Abaci S, Nessark B.Characterization and corrosion protection properties of composite material (PANI+TiO2) coatings on A304 stainless steel[J]. J. Coat. Technol. Res., 2015, 12(1): 107
[3] Akbarinezhad E.Synthesis of conductive polyaniline-graphite nanocomposite in supercritical CO2 and its application in zinc-rich epoxy primer[J]. J. Supercrit. Fluid., 2014, 94: 8
[4] Piromruen P, Kongparakul S, Prasassarakich P.Synthesis of polyaniline/montmorillonite nanocomposites with an enhanced anticorrosive performance[J]. Prog. Org. Coat., 2014, 77(3): 691
[5] Navarchian A H, Joulazadeh M, Karimi F.Investigation of corrosion protection performance of epoxy coatings modified by polyaniline/clay nanocomposites on steel surfaces[J]. Prog. Org. Coat., 2014, 77(2): 347
[6] Armelin E, Marti M, Liesa F, et al.Partial replacement of metallic zinc dust in heavy duty protective coatings by conducting polymer[J]. Prog. Org. Coat., 2010, 69(1): 26
[7] Sathiyanarayanan S, Azim S S, Venkatachari G.Corrosion protection mechanism of polyaniline blended organic coating on steel[J]. Prog. Org. Coat., 2009, 65(1): 152
[8] Mostafaei A, Nasirpouri F.Epoxy/polyaniline-ZnO nanorods hybrid nanocomposite coatings: Synthesis, characterization andcorrosion protection performance of conducting paints[J]. Prog. Org. Coat., 2014, 77(1): 146
[9] Shit A, Chatterjee S, Nandi A K.Dye-sensitized solar cell from polyaniline-ZnS nanotubes and its characterization through impedance spectroscopy[J]. Phys. Chem., 2014, 16(37): 20079
[10] Yang S X, Gong J, Li J B, et al.UV light controllable depletion zone of metal sulfide polyaniline p-n junction and its application in a photoresponsive sensor[J]. Chin. J. Lumin., 2013, 34(11): 1413
[10] (杨圣雪, 龚剑, 李京波等. 紫外光控制的金属硫化物/PANIp-n结及其在光敏传感器中的应用[J]. 发光学报, 2013, 34(11): 1413)
[11] Sathiyanarayanan S, Azim S S, Venkatachari G.A new corrosionprotection coating with polyaniline-TiO2 composite for steel[J]. Electrochim. Acta, 2007, 52(5): 2068
[12] Mostafaei A, Zolriasatein A.Synthesis and characterization of conductingpolyaniline nanocomposites containing ZnO nanorods[J]. Nat. Sci. Mater. Int., 2012, 22: 273
[13] Wang J, Torardi C C, Duch M W.Polyaniline-related ion-barrier anticorrosion coatings I. Ionic permeability of polyaniline, cationic, and bipolar films[J]. Synth. Met., 2007, 157: 851
[14] Fu P, Li H, Sun J, et al.Corrosive inhibition behavior of well-dispersible aniline/p-phenylenediamine copolymers[J]. Prog. Org. Coat., 2013, 76: 589
[15] Sathiyanarayanan S, Karpakam V, Kamaraj K, et al.Sulphonate doped polyaniline containing coatings for corrosion protection of iron[J]. Surf. Coat. Technol., 2010, 204: 1426
[16] Cao C N.Principles of Electrochemistry of Corrosion [M]. 2nd Ed. Beijing: Chemical Industry Press, 2004: 22
[16] (曹楚南. 腐蚀电化学原理 [M]. 第二版. 北京: 化学工业出版社, 2004: 22)
[17] Gray L G S, Appleman B R. EIS electrochemical impedance spectroscopy-a tool to predict remaining coating life[J]. J. Prot. Coat. Linings, 2003, 20: 66
[18] Loveday D, Peterson P, Rodgers B.Evaluation of organic coatings with electrochemical impedance spectroscopy[J]. JCT Coat. Tech.,2005, 2: 22
[19] Zhang J Q, Cao C N.Study and evaluation on organic coatings by electrochemical impedance spectroscopy[J]. Corros. Prot., 1998, 19(3): 99
[19] (张鉴清, 曹楚南. 电化学阻抗谱方法研究评价有机涂层[J]. 腐蚀与防护, 1998, 19(3): 99)
[20] Arefinia R, Shojaei A, Shariatpanahi H, et al.Anticorrosion properties of smart coating based on polyaniline nanoparticles/epoxy-ester system[J]. Prog. Org. Coat., 2012, 75(4): 502
[1] 万起展,陈宁宁,杨培培,钟莲,王燕华,王佳. 聚苯胺/改性石墨复合材料的电化学制备及其防腐蚀性能研究[J]. 中国腐蚀与防护学报, 2017, 37(5): 428-434.
[2] 李小宝,徐利,刘怡宏,廖婷,李明田,崔学军. 酞菁铜二磺酸改性聚苯胺的制备及耐蚀性能[J]. 中国腐蚀与防护学报, 2016, 36(4): 306-312.
[3] 张山,周丽娜,简璐,王煦. 聚苯胺/TiO2/环氧涂层的制备及耐蚀性研究[J]. 中国腐蚀与防护学报, 2016, 36(1): 59-66.
[4] 吕文静,张颖君,师超,邵亚薇,王艳秋,孟国哲. 水溶性掺杂聚苯胺的制备及其性能研究[J]. 中国腐蚀与防护学报, 2015, 35(6): 519-524.
[5] 潘太军, 汪涛. AZ91镁合金表面合成聚苯胺涂层及其腐蚀性能研究[J]. 中国腐蚀与防护学报, 2014, 34(6): 489-494.
[6] 康先进,范文玉,张彦英,钱余海,严川伟,孙超,宫骏. 聚苯胺长效防腐水性环保涂料的研制及性能研究[J]. 中国腐蚀与防护学报, 2012, 32(5): 393-396.
[7] 黄燕滨,宋高伟,刘学斌,丁华东,闫永贵,邵新海. Al-Zn-In-Mg-Ga-Mn牺牲阳极腐蚀防护行为研究[J]. 中国腐蚀与防护学报, 2012, 32(1): 44-47.
[8] 石南林,刘宝蕴,张彦英,宫骏,孙超. 聚苯胺在水中的抗菌作用[J]. 中国腐蚀与防护学报, 2011, 31(5): 385-388.
[9] 张颖君,冯涛,邵亚薇,孟国哲,张涛,王福会. 聚苯胺/环氧涂层对AZ91D镁合金耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2010, 30(4): 283-287.
[10] 徐国荣; 周光喜; 易清风; 任凤莲 . 铝基体上电沉积聚苯胺膜及其耐蚀性[J]. 中国腐蚀与防护学报, 2008, 28(1): 11-15 .
[11] 陈群志; 孙祚东; 陆维忠; 韩恩厚; 常铁军; 李京 . SEBF/SLF重腐蚀防护涂层应用于典型飞机结构中防腐性能综合评定[J]. 中国腐蚀与防护学报, 2005, 25(6): 365-368 .
[12] 邵亚薇; 严川伟; 杜元龙; 王福会 . 钛酸酯偶联剂对纳米Ti粉在环氧树脂中分散性的影响[J]. 中国腐蚀与防护学报, 2005, 25(4): 232-236 .
[13] 井利新 . 本征态聚苯胺的防腐蚀性能[J]. 中国腐蚀与防护学报, 2004, 24(5): 301-305 .