Please wait a minute...
中国腐蚀与防护学报  2010, Vol. 30 Issue (4): 257-261    
  研究报告 本期目录 | 过刊浏览 |
加载与循环干湿条件作用下对MnCu耐候钢的腐蚀行为
王雷, 董俊华, 柯伟
中国科学院金属研究所金属腐蚀与防护国家重点实验室 沈阳 110016
CORROSION BEHAVIOR OF MnCu COST-EFFECTIVE WEATHERING STEEL UNDER CYCLIC LOAD IN A WET/DRY CYCLIC CORROSION ENVIRONMENT
WANG Lei, DONG Junhua, KE Wei
State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
全文: PDF(1994 KB)  
摘要: 

同时采用循环加载及模拟加速腐蚀的方法,研究循环载荷对耐候钢在含氯离子气氛中腐蚀行为的影响。锈层截面形貌以及带锈电极的电化学极化行为和阻抗谱表明,在相同的拉伸时间内, 腐蚀周次较低时,耐候钢能较快获得稳定的锈层;腐蚀周次较高时,在长时间的循环载荷影响下,MnCu耐候钢的外锈层会更易产生裂纹甚至脱落,但内锈层结构相对稳定而基本不受一般载荷的影响,因此MnCu耐候钢依然具有良好的耐候性。

关键词 MnCu耐候钢干湿交替加速腐蚀循环加载电化学测量锈层    
Abstract

The resistance to corrosion of a MnCu cost-effective weathering steel under cyclic loading in a simulated chloride ion environment was investigated. The experiments were performed using a new wet/dry cyclic corrosion test (CCT). In order to simulate wet and dry alternative corrosion, 0.3 mass% NaCl solutions was sprayed on the specimens which were tensioned in the range of elastic deformation under cyclic loading (the maximum stress was 208 MPa). The rusted specimens were examined by SEM and via electrochemical measurements. The results showed that, in the same cyclic tension period, the MnCu cost-effective weathering steel has stable rust layer after low CCT, but there were more cracks appeared in outer rust layer after higher CCT due to the cyclic loading, but MnCu cost-effective weathering steel had still excellent corrosion resistance, because the inner rust played a key role to resist further corrosion.

Key wordsMnCu cost-effective weathering steel    wet/dry cyclic corrosion test, cyclic load    electrochemical measurements    rust layer
收稿日期: 2009-02-20     
ZTFLH: 

TG172.3

 
基金资助:

国家重点基础研究发展规划项目(2004CB619101)和国家自然科学基金重大项目(50499336, 50971120)资助

通讯作者: 董俊华     E-mail: jhdong@imr.ac.cn
Corresponding author: DONG Junhua     E-mail: jhdong@imr.ac.cn
作者简介: 王雷, 男,1970年生,博士生,研究方向为耐候钢

引用本文:

王雷, 董俊华, 柯伟. 加载与循环干湿条件作用下对MnCu耐候钢的腐蚀行为[J]. 中国腐蚀与防护学报, 2010, 30(4): 257-261.
YU Lei. CORROSION BEHAVIOR OF MnCu COST-EFFECTIVE WEATHERING STEEL UNDER CYCLIC LOAD IN A WET/DRY CYCLIC CORROSION ENVIRONMENT. J Chin Soc Corr Pro, 2010, 30(4): 257-261.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2010/V30/I4/257

[1] Yamashita M, Miyuki H, Nagaro H, et al. The long term growth of the protective rust later formed on weathering steel by atmospheric corrosion during a quarter of a century [J]. Corros.Sci., 1994, 36: 283-299
[2] Misawa T. The mechanism of atmospheric rusting and the protective amorphous rust on low alloy steel [J].Corros. Sci., 1974, 14: 279-289
[3] Zhang Q C, Ma F, Zheng W L.Bonding strength between the substrate and protective rust layer of weathering-steel [J]. Mater. Mech. Eng., 2004, 28(6): 30-32
    (张全成, 马峰, 郑文龙. 耐候钢表面保护性锈层与基体结合强度的研究 [J].机械工程材料, 2004, 28(6): 30-32)
[4] Zhang Q C, Wu J S. Mechanical properties of protective rust layer formed on surface of weathering steel panels [J]. J. Iron Steel Res., 2006, 18(3): 42-45
    (张全成, 吴建生. 耐候钢表面保护性锈层的力学性能 [J]. 钢铁研究学报,2006, 18(3): 42-45)
[5] Wang S T, Gao K W, Yang S W, et al. The effect of thermal shock for the cracks in the rust layer of structural steel [A]. The 8th National Youth Proseminar for Corrosion and Protection [C]. Shenyang, 2007, 111-116
    (王树涛, 高克玮, 杨善武等. 热震对结构钢锈层裂纹的影响 [A].第八届全国青年腐蚀与防护研讨会 [C]. 沈阳, 2007, 111-116)
[6] Goo B C, Lee H S. An experimental study on the corrosion and fatigue of structural steels [J]. Key Eng. Mater., 2006, 326: 1059-1062
[7] Wu X H, Zheng Y L, Zhu Z Y, et al. The relation between the structure of rust and corrosion fatigue life [J]. Corros. Sci.Prot. Technol, 1992, 4(1): 53-58
    (吴鑫华, 郑宇礼, 朱自勇等. 锈层结构与腐蚀疲劳寿命的关系 [J].腐蚀科学与防护技术, 1992, 4(1): 53-58)
[8] Dong J H, Chen X H, Han E H, et al. A Cost-effective Weathering Steel [P]. Patent: 200510045624. 6;
    (董俊华,陈新华,韩恩厚等. 一种经济型耐候钢号 [P]. 200510045624.6, 2005)
[9] Dong J H, Chen X H, Han E H, et al. Synergistic effect of copper and manganese on resistant to atmospheric corrosion for low alloying steel [A]. 16th International Corrosion Congress, September [C], Beijing, 2005, 19-24
[10] Dong J H, Chen X H, Han E H, et al. Synergistic effect of copper and manganese on resistant to atmospheric corrosion for low-alloying steel [J]. Iron Steel, 2005, 40: 127-131
[11] Li Q X, Wang Z Y, Han W, et al. Corrosion behavior of weathering steel in a wet/dry environment containing MgCl2 [J]. J. Chin. Soc. Corros. Prot., 2006,26(3): 136-140
     (李巧霞, 王振尧, 韩薇等. 耐候钢在含MgCI2介质的干湿环境下的腐蚀行为 [J]. 中国腐蚀与防护学报, 2006, 26(3): 136-140)
[12] Evans U R. Mechanism of rust [J]. Corros. Sci., 1969, 9(11): 813-821
[13] Evans U R, Taylor C A J. Mechanism of atmospheric rusting [J]. Corros. Sci., 1972, 12(3): 227-246
[14] Chen X H, Dong J H, Han E H, et al. Effect of Cu, Mn on the corrosion performance of carbon steels in wet/dry environments [J]. J. Mater Prot, 2007, 40: 19-22
[15] Dong J, Dong J H, Han E H, et al. Corrosion behavior of rusted mild steel under means of wet/dry alternate conditions [J]. Corros. Sci. Prot. Technol, 2006, 18: 414-417
     (董杰, 董俊华, 韩恩厚等. 低碳钢带锈电极的腐蚀行为 [J].腐蚀科学与防护技术, 2006, 18: 414-417)
[16] Li Q X, Wang Z Y, Han W,et al Characterization of the rust formed on weathering steel exposed to Qinghai salt lake atmosphere [J]. Corros. Sci., 2008, 50:365-371
[17] Nishimura T, Katayama H, Noda K, et al. Electrochemical behavior of rust formed on carbon steel in a wet/dry environment containing chloride ions [J]. Corrosion, 2000, 56(9): 935-941
[18] Chen X H. Synergistic effect of alloying elements on resistance to atmospheric corrosion of cost effective weathering steel [D]. Doctoral Dissertation, Graduate School of Chinese Academy of Sciences, 2007, 50-52
     (陈新华. 合金元素对经济耐候钢大气腐蚀协同抑制作用 [D].中国科学院研究生院博士学位论文, 2007, 50-52)

[1] 邓俊豪,胡杰珍,邓培昌,王贵,吴敬权,王坤. 氧化皮对SPHC热轧钢板在热带海洋大气环境中初期腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(4): 331-337.
[2] 孙永伟,钟玉平,王灵水,范芳雄,陈亚涛. 低合金高强度钢的耐模拟工业大气腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 274-280.
[3] 张新新,高志明,胡文彬,伍志鹏,韩连恒,卢丽花,修妍,夏大海. Q235钢在薄液膜下腐蚀行为与图像信息的相关性研究[J]. 中国腐蚀与防护学报, 2017, 37(5): 444-450.
[4] 李东亮,付贵勤,朱苗勇. 湿热工业海洋大气中Si对桥梁钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2016, 36(5): 433-440.
[5] 张建春, 麻晗, 左龙飞, 李阳. 耐蚀钢筋20MnSiCrV在氯盐环境下的腐蚀行为[J]. 中国腐蚀与防护学报, 2015, 35(5): 461-466.
[6] 罗睿, 吴军, 柳鑫龙, 周学杰, 郑鹏华, 张三平. Q235和09CuPCrNi-A钢在两种不同大气环境中腐蚀早期锈层演化研究[J]. 中国腐蚀与防护学报, 2014, 34(6): 566-573.
[7] 陈碧, 郑碧娟, 张帆, 刘宏芳. 静磁场下硫酸盐还原菌对HSn70-1铜合金的腐蚀行为[J]. 中国腐蚀与防护学报, 2014, 34(4): 339-345.
[8] 彭欣, 王佳, 王金龙, 山川, 贾红刚, 刘在健, 王海杰. 海水中带锈Q235钢腐蚀电化学参数测定[J]. 中国腐蚀与防护学报, 2013, 33(6): 449-454.
[9] 米丰毅,王向东,汪兵,陈小平,彭云. 显微组织对低碳钢耐蚀性的影响[J]. 中国腐蚀与防护学报, 2010, 30(5): 391-395.
[10] 王博,卢凯,王建景,姜茂发,王德永,刘承军. 模拟工业大气条件下高锰耐候钢的腐蚀行为[J]. 中国腐蚀与防护学报, 2010, 30(4): 333-336.
[11] 郝献超 李晓刚 肖葵 董超芳. Q235钢在西沙大气环境中的初期腐蚀行为[J]. 中国腐蚀与防护学报, 2009, 29(6): 465-470.
[12] 杨景红; 刘清友; 王向东; 孙冬柏; 李向阳 . 耐大气腐蚀钢及其腐蚀产物的研究概况[J]. 中国腐蚀与防护学报, 2007, 27(6): 367-372 .
[13] 贾书君; 刘清友; 汪兵 . 磷对低碳钢耐大气腐蚀性能的影响研究[J]. 中国腐蚀与防护学报, 2007, 27(3): 137-141 .
[14] 闫茂成; 翁永基 . 环境溶液对管道钢应力腐蚀过程电化学行为的影响[J]. 中国腐蚀与防护学报, 2005, 25(1): 34-38 .
[15] 张全成; 吴建生; 陈家光 . 暴露1年的耐大气腐蚀用钢表面锈层分析[J]. 中国腐蚀与防护学报, 2001, 21(5): 297-300 .