Please wait a minute...
中国腐蚀与防护学报  2021, Vol. 41 Issue (4): 542-548    DOI: 10.11902/1005.4537.2020.124
  研究报告 本期目录 | 过刊浏览 |
新型表面活性剂作为油气田酸化缓蚀剂的制备及其性能研究
王鼎立1, 李勇明1(), 蒋立明2, 陈波1, 骆昂1
1.西南石油大学 油气藏地质及开发工程国家重点实验室 成都 610500
2.重油开发公司 新疆油田公司 克拉玛依 834000
Performance of Two New Surfactants as Acidizing Inhibitors for Oil and Gas Fields
WANG Dingli1, LI Yongming1(), JIANG Liming2, CHEN Bo1, LUO Ang1
1.State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China
2.Heavy Oil Development Company, Xinjiang Oilfield Company, Karamay 834000, China
全文: PDF(7862 KB)   HTML
摘要: 

利用芥酸和油酸两种绿色原材料合成了新型的表面活性剂缓蚀剂,并对两种缓蚀剂在15%(质量分数) 盐酸溶液中进行了一系列性能测试。结果表明,两种缓蚀剂在90 ℃条件下具有良好的缓蚀效果,可以作为油气田酸化有效的缓蚀剂;通过电化学测试从电化学机理上揭示了缓蚀剂的性能;通过扫描Kelvin探针 (SKP) 和扫描电子显微镜 (SEM) 从表面形貌角度研究了其微观腐蚀情况,相比于空白组,实验组表面形貌保持较好的状态,说明两种缓蚀剂具有良好的效果;最后通过量子化学计算,从分子计算角度证实合成的缓蚀剂具有有效的作用,同时也展示出实验和理论结果的相关性。

关键词 缓蚀剂电化学表面活性剂酸溶液    
Abstract

In view of the high toxicity and high cost of the current corrosion inhibitors, a new type of surfactant corrosion inhibitor was synthesized using two green raw materials of erucic acid and oleic acid, and the performance of the two corrosion inhibitors for P110 steel in 15% (mass fraction) hydrochloric acid solution were assessed by means of mass loss measurement, electrochemical measurement, Scanning Kelvin probe (SKP) and scanning electron microscope (SEM). Results show that the two corrosion inhibitors have good corrosion inhibition effects at 90 ℃ and can be used as effective corrosion inhibitors for oil and gas field acidification. In comparison with the P110 steel tested in the blank 15%HCl solution, the surface morphology of the same steel tested in the 15%HCl solution with addition of the two corrosion inhibitors maintained a better state, indicating that the two corrosion inhibitors had a good effect. Finally, through quantum chemical calculation, the synthetic corrosion inhibitor has been proved to be effective from the perspective of molecular calculation, and the correlation between experimental and theoretical results has also been demonstrated.

Key wordsinhibitor    electrochemical    surfactant    acid solution
收稿日期: 2020-07-17     
ZTFLH:  TG174  
基金资助:国家自然科学基金(U19A2043)
通讯作者: 李勇明     E-mail: swpifrac@163.com
Corresponding author: LI Yongming     E-mail: swpifrac@163.com
作者简介: 王鼎立,男,1992年生,博士生

引用本文:

王鼎立, 李勇明, 蒋立明, 陈波, 骆昂. 新型表面活性剂作为油气田酸化缓蚀剂的制备及其性能研究[J]. 中国腐蚀与防护学报, 2021, 41(4): 542-548.
Dingli WANG, Yongming LI, Liming JIANG, Bo CHEN, Ang LUO. Performance of Two New Surfactants as Acidizing Inhibitors for Oil and Gas Fields. Journal of Chinese Society for Corrosion and protection, 2021, 41(4): 542-548.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2020.124      或      https://www.jcscp.org/CN/Y2021/V41/I4/542

图1  表面活性剂合成路线图
Cmmol/LDEERDEOD
v / g·m-2·h-1η / %v / g·m-2·h-1η / %
Blank825.525---825.525---
12154.72381.26168.75779.56
14104.19987.38113.58486.24
1657.21093.0781.34090.15
1814.12898.2937.96795.40
207.99899.0310.96498.67
表1  两种缓蚀剂失重实验结果
图2  不同浓度下两种缓蚀剂极化曲线测试结果
InhibitorC mmol/LEcorrVSCEIcorrmA·cm-2βamV·dec-1βc mV·dec-1η%
DEERBlank-0.4061.46176.04-175.2---
12-0.3740.10791.04-163.692.7
14-0.3890.08691.91-166.594.1
16-0.3790.04992.22-173.296.7
18-0.3730.02884.15-163.698.1
20-0.3840.02185.12-174.398.6
DEODBlank-0.4061.46176.04-175.2---
12-0.3450.12785.11-195.891.3
14-0.3570.09693.22-180.693.4
16-0.3480.07797.15-191.994.7
18-0.3540.04198.10-194.197.2
20-0.3590.03294.16-187.797.8
表2  两种缓蚀剂极化曲线拟合结果
图3  不同浓度下两种缓蚀剂的Nyquist图
图4  不同浓度下两种缓蚀剂的EIS测试结果
图5  缓蚀剂在15%盐酸溶液中的等效电路图
InhibitorC / mmol/LRs / Ω·cm2CPE1Rpore / Ω·cm2CPE2Rct / Ω·cm2η / %
Y01 / Ω-1·sn·cm-2nY02 / Ω-1·sn·cm-2n
DEERBlank0.5967.10.787.9269.70.6211.4---
121.0715.40.868.3190.10.69152.288.0
141.215.80.887.1171.20.72202.690.8
161.018.30.8812.1142.60.71212.891.4
180.9310.50.8922.483s.90.67265.893.3
201.110.10.8725.566.50.69340.394.7
DEODBlank0.5967.10.787.9269.70.6211.4---
120.6716.60.899.4126.80.59190.690.3
140.7410.70.879.9116.80.62207.591.1
160.808.90.9018.7107.40.67238.292.5
180.897.50.8822.613.70.69246.692.8
200.988.40.8929.578.30.62263.293.4
表3  EIS参数拟合结果
图6  样品在浸入15%盐酸溶液前后的电位分布结果
图7  低碳钢样品在浸入15%盐酸溶液前后的SEM像
图8  两种表面活性剂DEER和DEOD的优化结构和分子轨道分布图
InhibotorEHOMOELUMOΔEeVμDXeVγeVΔN
DEER-7.1384-2.84604.292438.67974.99222.14620.4678
DEOD-7.2859-2.89774.388233.48505.09182.19410.4348
表4  量子化学计算结果
1 Haruna K, Obot I B, Ankah N K, et al. Gelatin: a green corrosion inhibitor for carbon steel in oil well acidizing environment [J]. J. Mol. Liq., 2018, 246: 515
2 Ituen E B, Akaranta O, Umoren S A. N-acetyl cysteine based corrosion inhibitor formulations for steel protection in 15%HCl solution [J]. J. Mol. Liq., 2017, 246: 112
3 Li Y L, Liu Y, Yan C, et al. Application of corrosion inhibitors in the development of oil and gas fields [J]. Contemp. Chem. Ind., 2019, 48: 147
3 李耀龙, 刘云, 鄢晨等. 油气田开发过程中的缓蚀剂应用 [J]. 当代化工, 2019, 48: 147
4 Li C N. Research progress of oil acidizing corrosion inhibitor [J]. Surf. Technol., 2016, 45(8): 80
4 李丛妮. 油田酸化缓蚀剂的研究进展 [J]. 表面技术, 2016, 45(8): 80
5 Lv Y Y, Wang Y. Research progress of corrosion inhibitor in China [J]. Pet. Tubular Goods Instrum., 2015, 1(4): 5
5 吕依依, 王远. 油气田用缓蚀剂研发进展 [J]. 石油管材与仪器, 2015, 1(4): 5
6 Zhou S J, Guo X H, Du S Z, et al. Development and research progress of acidizing corrosion inhibitor for oil well [J]. Corros. Sci. Prot. Technol., 2014, 26: 469
6 周生杰, 郭学辉, 杜素珍等. 油井酸化缓蚀剂的开发研究进展 [J]. 腐蚀科学与防护技术, 2014, 26: 469
7 Ituen E, Mkpenie V, Ekemini E. Corrosion inhibition of X80 steel in simulated acid wash solution using glutathione and its blends: Experimental and theoretical studies [J]. Colloid Surf. A-Physicochem. Eng. Asp., 2019, 578: 123597
8 Wang X M, Yang H Y, Wang F H. A cationic Gemini-surfactant as effective inhibitor for mild steel in HCl solutions [J]. Corros. Sci., 2010, 52: 1268
9 Li J B, Zhang L M, Hu Z H, et al. Applied research of Mannich reaction in synthesis of acidifying corrosion inhibitor [J]. Fine Spec. Chem., 2014, 22(7): 11
9 李建波, 张莉梅, 胡正海等. Mannich反应在酸化缓蚀剂合成中的应用 [J]. 精细与专用化学品, 2014, 22(7): 11
10 Zhang J T, Li Q D, Zhao J. Research progress of acidizing corrosion inhibitors in oil/gas well [J]. Corros. Prot., 2014, 35(6): 593
10 张娟涛, 李谦定, 赵俊. 油气井酸化缓蚀剂研究进展 [J]. 腐蚀与防护, 2014, 35(6): 593
11 Lu Y B. P110Steel high-temperature hydrochloric acid inhibitor: Synthesis, performance evaluation and mechanism [D]. Xi'an: Xi'an Shiyou University, 2012
11 卢永斌. P110钢高温盐酸酸化缓蚀剂研究 [D]. 西安: 西安石油大学, 2012
12 Ayukayeva V N, Boiko G I, Lyubchenko N P, et al. Polyoxyethylene sorbitan trioleate surfactant as an effective corrosion inhibitor for carbon steel protection [J]. Colloid Surf. A-Physicochem. Eng. Asp., 2019, 579: 123636
13 Hegazy M A, Abdallah M, Ahmed H. Novel cationic Gemini surfactants as corrosion inhibitors for carbon steel pipelines [J]. Corros. Sci., 2010, 52: 2897
14 Long F Y, Yang Y, Wang S L, et al. Microregion electrochemical measurement technology and its application in corrosion [J]. Corros. Sci. Prot. Technol., 2015, 27: 194
14 龙凤仪, 杨燕, 王树立等. 微区电化学测量技术及其在腐蚀中的应用 [J]. 腐蚀科学与防护技术, 2015, 27: 194
15 Pakiet M, Kowalczyk I, Garcia R L, et al. Gemini surfactant as multifunctional corrosion and biocorrosion inhibitors for mild steel [J]. Bioelectrochemistry, 2019, 128: 252
16 Pakiet M, Tedim J, Kowalczyk I, et al. Functionalised novel Gemini surfactants as corrosion inhibitors for mild steel in 50 mM NaCl: Experimental and theoretical insights [J]. Colloid Surf. A-Physicochem. Eng. Asp., 2019, 580: 123699
17 Li Q D, Wang J G, Yu H J, et al. A novel highly-efficient acidizing corrosion inhibitor used for oil and gas wells [J]. Nat. Gas Ind., 2008, 28(2): 96
17 李谦定, 王京光, 于洪江等. 一种新型高效油气井酸化缓蚀剂的研制 [J]. 天然气工业, 2008, 28(2): 96
18 Qiu H Y, Li J B. The present situation and expectation of acidizing corrosion inhibitors [J]. Corros. Sci. Prot. Technol., 2005, 17: 255
18 邱海燕, 李建波. 酸化缓蚀剂的发展现状及展望 [J]. 腐蚀科学与防护技术, 2005, 17: 255
19 El-Tabei A S, Hegazy M A. Synthesis and characterization of a novel nonionic Gemini surfactant as corrosion inhibitor for carbon steel in acidic solution [J]. Chem. Eng. Commun., 2015, 202: 851
[1] 崔浩燃, 梁平, 史艳华, 杨众魁, 韩利. 脱硝剂浓度对S2205不锈钢耐蚀性及其临界点蚀温度的影响[J]. 中国腐蚀与防护学报, 2021, 41(4): 529-534.
[2] 伊光辉, 郑大江, 宋光铃. 酸洗对316L不锈钢表面形貌、耐蚀性能及表面光学常数的影响[J]. 中国腐蚀与防护学报, 2021, 41(4): 461-468.
[3] 周浩, 王胜利, 刘雪峰, 尤世界. 新型复合缓蚀剂对青铜文物的防腐蚀研究[J]. 中国腐蚀与防护学报, 2021, 41(4): 517-522.
[4] 谭伯川, 张胜涛, 李文坡, 向斌, 强玉杰. 食用香料1,4-二硫-2,5-二醇环保型缓蚀剂对X70钢在0.5 mol/L H2SO4溶液中的缓蚀性能研究[J]. 中国腐蚀与防护学报, 2021, 41(4): 469-476.
[5] 林朝晖, 明南希, 何川, 郑平, 陈旭. 静水压力对X70钢在海洋环境中腐蚀行为影响研究[J]. 中国腐蚀与防护学报, 2021, 41(3): 307-317.
[6] 苍雨, 黄毓晖, 翁硕, 轩福贞. 环境变量对核电汽轮机转子钢焊接接头电偶腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2021, 41(3): 318-326.
[7] 冉斗, 孟惠民, 李全德, 巩秀芳, 倪荣, 姜英, 龚显龙, 戴君, 隆彬. 温度对14Cr12Ni3WMoV不锈钢在0.02 mol/L NaCl溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(3): 362-368.
[8] 王坤泰, 陈馥, 李环, 罗米娜, 贺杰, 廖子涵. 铁细菌对L245钢腐蚀行为的影响研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 248-254.
[9] 乔及森, 夏宗辉, 刘立博, 许佳敏, 刘旭东. 铝镁双金属反向等温包覆挤压棒材耐腐蚀性能[J]. 中国腐蚀与防护学报, 2021, 41(2): 255-262.
[10] 张艺凡, 袁晓光, 黄宏军, 左晓姣, 程禹霖. 铜铝层状复合板中性盐雾腐蚀行为研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 241-247.
[11] 张慧云, 郑留伟, 孟宪明, 梁伟. 电化学充氢对Cr15铁素体不锈钢和304奥氏体不锈钢氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 202-208.
[12] 张腾, 刘静, 黄峰, 胡骞, 戈方宇. 交变应力频率对E690钢在3.5%NaCl溶液中腐蚀电化学行为的影响[J]. 中国腐蚀与防护学报, 2021, 41(2): 226-232.
[13] 曹京宜, 方志刚, 冯亚菲, 李亮, 杨延格, 寿海明, 王兴奇, 臧勃林. 国产镀锌钢在不同水环境中的腐蚀行为:II反渗透水和调质水[J]. 中国腐蚀与防护学报, 2021, 41(2): 178-186.
[14] 曹京宜, 杨延格, 方志刚, 寿海明, 李亮, 冯亚菲, 王兴奇, 褚广哲, 赵伊. 淡水舱涂层在不同水环境中的失效行为研究[J]. 中国腐蚀与防护学报, 2021, 41(2): 209-218.
[15] 曹京宜, 方志刚, 李亮, 冯亚菲, 王兴奇, 寿海明, 杨延格, 褚广哲, 殷文昌. 国产镀锌钢在不同水环境中的腐蚀行为:I淡水和盐水[J]. 中国腐蚀与防护学报, 2021, 41(2): 169-177.