Please wait a minute...
中国腐蚀与防护学报  2017, Vol. 37 Issue (6): 597-604    DOI: 10.11902/1005.4537.2016.125
  研究报告 本期目录 | 过刊浏览 |
锅炉补给水中典型有机物分解规律及其对低压缸叶片腐蚀特性研究
王娜娜1, 王锋涛2, 常亮2, 朱志平1()
1 长沙理工大学化学与生物工程学院 电力与交通材料保护湖南省重点实验室 长沙 410014
2 国网河南省电力公司电力科学研究院 郑州 450052
Decomposition of Typical Organic Substance in Water Supply of Boiler and Corrosivity of Its Decomposition Products
Nana WANG1, Fengtao WANG2, Liang CHANG2, Zhiping ZHU1()
1 Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha 410014, China
2 Henan Electric Power Research Institute, Zhengzhou 450052, China
全文: PDF(3023 KB)   HTML
摘要: 

针对补给水中典型有机物—腐植酸,进行了350 ℃、10个浓度 (0~20 mg/L) 下的高压釜分解实验,并进行了350 ℃、典型浓度7.5 mg/L下间隔时间取样的分解实验,采用离子色谱仪、TOC分析仪测定高温分解后的汽、液相分解样,根据分解产物组分含量,利用电化学及微观表征 (SEM,EDS,XRD等) 研究了低分子有机酸+杂质离子对汽轮机材质腐蚀行为的影响。结果表明:腐植酸高温分解产物中低分子有机酸主要为乙酸、甲酸,杂质阴离子主要为SO42-,Cl-,NO3-,F- 4种;其中SO42-,NO3-,Cl-的存在对汽轮机叶片钢的腐蚀有明显的促进作用,但随着F-浓度的增大出现抑制作用。

关键词 补给水杂质阴离子腐植酸分解产物TOC    
Abstract

Since the retrofitting of a thermal power unit for heat delivery, correspondingly, the supplied water of boiler significantly increased from ordinary 3%~5% to above 50%, thereby the conductivity of the water generally exceeded, resulting in serious acid corrosion troubles in low pressure cylinder of the steam turbine. It is known that humic acid is a typical organic substance related with corrosion troubles in the water system, thus the decomposition behavior of humic acid at 350 ℃ was studied in concentration range 0~20 mg/L, while decomposition products specially from the test by 7.5 mg/L of humic acid at different time intervals were extracted for composition determination with ion chromatography and TOC analyzer. Thereafter the effect of low molecular organic acids with impurities on the corrosion behavior of steel 1Cr13 was characterized by means of electrochemical methods as well as SEM, EDS and XRD. The results showed that high temperature decomposition products of humic acid contained low molecular organic acids mainly of acetic acid and formic acid,and impurity ions of SO42-, Cl-, NO3- and F-. Obviously, the ions of SO42-, NO3- and Cl- were aggressive to the steel 1Cr13, in the contrary, F- exhibited inhibition effect with the increasing concentration.

Key wordsmake-up water    anion    humic acid    decomposition product    TOC
收稿日期: 2016-08-25     
ZTFLH:  TG172.42  
基金资助:湖南省科技计划重点项目 (2013GK2016) 和河南省电力公司电力科学研究院自筹科研项目 (19151209)
作者简介:

作者简介 王娜娜,女,1991年生,硕士生

引用本文:

王娜娜, 王锋涛, 常亮, 朱志平. 锅炉补给水中典型有机物分解规律及其对低压缸叶片腐蚀特性研究[J]. 中国腐蚀与防护学报, 2017, 37(6): 597-604.
Nana WANG, Fengtao WANG, Liang CHANG, Zhiping ZHU. Decomposition of Typical Organic Substance in Water Supply of Boiler and Corrosivity of Its Decomposition Products. Journal of Chinese Society for Corrosion and protection, 2017, 37(6): 597-604.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2016.125      或      https://www.jcscp.org/CN/Y2017/V37/I6/597

图1  腐植酸的基本单元结构
图2  350 ℃下12 h分解后汽、液相样pH值随腐殖酸浓度的变化
图3  350 ℃下12 h分解样液相离子含量随腐殖酸浓度的变化
图4  350 ℃下12 h分解样汽相离子含量随腐植酸浓度的变化
图5  350 ℃下7.5 mg/L腐植酸分解间隔取液相样离子含量随时间的变化
图6  350 ℃下12 h分解样汽、液相TOC含量随腐植酸浓度的变化
图7  350 ℃下7.5 mg/L腐植酸分解间隔取汽、液相样TOC含量随时间的变化
图8  80 ℃下1Cr13钢在不同浓度NaCl溶液中的电化学极化曲线
图9  80 ℃下1Cr13钢在不同浓度NaCl溶液中的电化学阻抗Nyquist图
图10  阻抗谱的等效模拟电路图
CCl- βamVdev-1 βcmVdev-1 IcorrμAcm-2 EcorrV
Pure water 5.039 4.925 0.2975 -0.3413
0 mg/L 5.491 6.086 0.5493 -0.3660
5 mg/L 5.195 4.883 2.3200 -0.3889
50 mg/L 4.960 4.997 2.9710 -0.3895
100 mg/L 5.394 4.767 3.3290 -0.3995
表1  80 ℃下1Cr13钢在不同浓度NaCl溶液中的电化学极化曲线参数
CCl- Rs / kΩ CP / μF RP / kΩcm-2
Pure water 9.5350 0.4110 55.08
0 mg/L 4.1200 0.1505 32.75
5 mg/L 0.3860 0.2549 4.338
50 mg/L 0.2070 0.3606 3.781
100 mg/L 0.1928 0.5747 2.233
表2  80 ℃下1Cr13钢在不同浓度NaCl溶液中的电化学阻抗参数
图11  80 ℃下,Cl-模拟溶液中腐蚀试片表面SEM像及EDS结果
图12  80 ℃下,Cl-模拟溶液中腐蚀前后试片表面金相图谱
图13  80 ℃下,F-模拟溶液中腐蚀试片表面SEM像及EDS结果
图14  80 ℃下,含F-模拟溶液中腐蚀试片表面XRD谱
[1] Cheng D T, Meng W G, Liu Y, et al.Feasibility study of large steam turbine condenser transformation[J]. Turb. Technol., 2016, 58: 125(程东涛, 孟伟光, 刘杨等. 大型汽轮机凝汽器改造可行性研究[J]. 汽轮机技术, 2016, 58: 125)
[2] El-Said M, Ramzi M, Abdel-Moghny T.Analysis of oilfield waters by ion chromatography to determine the composition of scale deposition[J]. Desalination, 2009, 249: 748
[3] Randtke S J.Organic contaminant removal by coagulation and related process combinations[J]. J. Am. Water Works Assoc., 1988, 80: 40
[4] Ameer M A, Fekry A M, Heakal F E T. Electrochemical behaviour of passive films on molybdenum-containing austenitic stainless steels in aqueous solutions[J]. Electrochim. Acta, 2004, 50: 43
[5] Yan J Y, Shi Y Y, Zhu Y, et al.Study on distribution of low molecular weight organic acids and related inorganic anions in thermal system of power plants[J]. Bull. Sci. Technol., 1993, 9: 86(严晋婴, 施荫玉, 朱岩等. 低分子量有机酸在火力发电厂热力系统中分布状况的研究[J]. 科技通报, 1993, 9: 86)
[6] Cáceres L, Vargas T, Herrera L.Influence of pitting and iron oxide formation during corrosion of carbon steel in unbuffered NaCl solutions[J]. Corros. Sci., 2009, 51: 971
[7] Sun Q Q, Zhou W H, Xie Y H, et al.Effect of trace chloride and temperature on electrochemical corrosion behavior of 7150-T76 AL alloy[J]. J. Chin. Soc. Corros. Prot., 2016, 36: 121(孙擎擎, 周文辉, 谢跃煌等. 微量Cl-和温度对7150-T76铝合金电化学腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2016, 36: 121)
[8] Fin?gar M, Milo?ev I.Corrosion behaviour of stainless steels in aqueous solutions of methanesulfonic acid[J]. Corros. Sci., 2010, 52: 2430
[9] Trueba M, Trasatti S P.Study of Al alloy corrosion in neutral NaCl by the pitting scan technique[J]. Mater. Chem. Phys., 2010, 121: 523
[10] Ezuber H, El-Houd A, El-Shawesh F.A study on the corrosion behavior of aluminum alloys in seawater[J]. Mater. Des., 2008, 29: 801
[11] Zou Y, Wang J, Zheng Y Y.Electrochemical techniques for determining corrosion rate of rusted steel in seawater[J]. Corros. Sci., 2011, 53: 208
[12] Zou Y, Wang J, Zheng Y Y.Electrochemical corrosion behaviors of rusted carbon steel[J]. Acta Phys.-Chim. Sin., 2010, 26: 2361(邹妍, 王佳, 郑莹莹. 锈层下碳钢的腐蚀电化学行为特征[J]. 物理化学学报, 2010, 26: 2361)
[13] Zou Y, Wang J, Zheng Y Y.Electrochemical techniques for determining corrosion rate of rusted steel in seawater[J]. Corros. Sci., 2011, 53: 208
[14] Zou Y, Zheng Y Y, Wang Y H, et al.Cathodic electrochemical behaviors of mild steel in seawater[J]. Acta Metall. Sin., 2010, 46: 123(邹妍, 郑莹莹, 王燕华等. 低碳钢在海水中的阴极电化学行为[J]. 金属学报, 2010, 46: 123)
[15] Peng X, Wang J, Wang J L, et al.Corrosion electrochemical parameters test of rusted carbon steel in seawater[J]. J. Chin. Soc. Corros. Prot., 2013, 33: 449(彭欣, 王佳, 王金龙等. 海水中带锈Q235钢腐蚀电化学参数测定[J]. 中国腐蚀与防护学报, 2013, 33: 449)
[16] Nishimura T, Katayama H, Noda K, et al.Electrochemical behavior of rust formed on carbon steel in a wet/dry environment containing chloride ions[J]. Corrosion, 2000, 56: 935
[17] Hu Y B, Dong C F, Sun M, et al.Effects of solution pH and Cl- on electrochemical behaviour of an Aermet100 ultra-high strength steel in acidic environments[J]. Corros. Sci., 2011, 53: 4159
[18] Sun M, Xiao K, Dong C F, et al.Electrochemical behavior of 300M and Cr9 steel in acidic environments[J]. J. Chin. Soc. Corros. Prot., 2012, 32: 449(孙敏, 肖葵, 董超芳等. 300M和Cr9钢在酸性介质中的电化学性能研究[J]. 中国腐蚀与防护学报, 2012, 32: 449)
[19] Pardo A, Merino M C, Coy A E, et al.Effect of Mo and Mn additions on the corrosion behaviour of AISI 304 and 316 stainless steels in H2SO4[J]. Corros. Sci., 2008, 50: 780
[20] Graedel T E.Corrosion mechanisms for aluminum exposed to the atmosphere[J]. J. Electrochem. Soc., 1989, 136: 204C
[21] Zhou H R, Li X G, Ma J, et al.Dependence of the corrosion behavior of aluminum alloy 7075 on the thin electrolyte layers[J]. Mater. Sci. Eng., 2009, B162: 1
[22] Wu X Q, Fu Y, Ke W, et al.Corrosion behavior of high nitrogen austenitic stainless steels[J]. J. Chin. Soc. Corros. Prot., 2016, 36: 197(吴欣强, 付尧, 柯伟等. 高氮奥氏体不锈钢的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2016, 36: 197)
[23] Lim Y S, Kim J S, Ahn S J, et al.The influences of microstructure and nitrogen alloying on pitting corrosion of type 316L and 20wt.% Mn-substituted type 316L stainless steels[J]. Corros. Sci., 2001, 43: 53
[24] Cohen P.The ASME handbook on water technology for thermal power systems [R]. New York: The American Society of Mechanical Engineers, 1989: 588
[25] Zhu Z P.Study on mechanism for removal of organic matter by carbon nanotubes composites in boiler make-up water [D]. Changsha: Central South University, 2011(朱志平. 碳纳米管复合物去除电站锅炉补给水中有机物的机理研究 [D]. 长沙: 中南大学, 2011)
No related articles found!