Please wait a minute...
中国腐蚀与防护学报  2014, Vol. 34 Issue (1): 1-18    DOI: 10.11902/1005.4537.2013.275
  综述 本期目录 | 过刊浏览 |
电化学噪声分析方法的研究进展
张 涛1,2 杨延格1 邵亚薇1,2 孟国哲1,2 王福会1,2
1. 中国科学院金属研究所 金属腐蚀与防护国家重点实验室 沈阳 110016;
2. 哈尔滨工程大学材料科学与化学工程学院腐蚀与防护实验室 哈尔滨 150001
Advances of the Analysis Methodology for Electrochemical Noise
ZHANG Tao1,2, YANG Yange1, SHAO Yawei1,2, MENG Guozhe1,2, WANG Fuhui1,2
1. State Key Laboratory for Corrosion and Protection, Institute of Metals Research, Chinese Academy of Sciences, Shenyang 110016, China;
2. Corrosion and Protection Laboratory, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
全文: PDF(11581 KB)   HTML
摘要: 初步回顾了近年来电化学噪声分析方法的若干研究工作,举例介绍了电化学噪声数据直流漂移、电化学噪声时-频分析、非线性分析和模式识别等分析方法的优缺点,并对电化学噪声分析方法的发展方向进行了展望。
关键词 电化学噪声直流漂移时-频分析非线性分析模式识别    
Abstract:Advances of the analysis methodology for electrochemical noise in corrosion field were reviewed in this paper. Some examples of the analysis methodology, such as the direct current dirft, time-frequency analysis, non-linear analysis and pattern recognization, were introduced in order to demostrate the advantages and shortcomings of these analysis methodolgoies and finally, the development trend of the analysis methodology for electrochemical noise was also forecasted.
Key wordselectrochemical noise    direct current drift    time-frequency analysis    non-linear
analysis
   pattern recognization
收稿日期: 2013-12-23     
ZTFLH:  O646  
通讯作者: 张涛,E-mail:taozhang@imr.ac.cn   
作者简介: 张涛,男,1977 年生,研究员,研究方向为腐蚀测试技术与方法

引用本文:

张涛, 杨延格, 邵亚薇, 孟国哲, 王福会. 电化学噪声分析方法的研究进展[J]. 中国腐蚀与防护学报, 2014, 34(1): 1-18.
. Advances of the Analysis Methodology for Electrochemical Noise. Journal of Chinese Society for Corrosion and protection, 2014, 34(1): 1-18.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2013.275      或      https://www.jcscp.org/CN/Y2014/V34/I1/1

[1] Bertocci U, Huet F. Noise analysis applied to electrochemical systems [J]. Corrosion, 1995, 51: 131-144
[2] Legat A, Zevnik C. The electrochemical noise of mild and stainless steel in various water solutions [J]. Corros. Sci., 1993, 35: 1661-1666
[3] Legat A. Influence of electrolyte movement on measured electrochemical noise [J]. Corrosion, 2000, 56: 1086-1092
[4] Gouveia-Caridade C, Pereira M, Brett C. Electrochemical noise and impedance study of aluminium in weakly acid chloride solution [J]. Electrochim. Acta, 2004, 49: 785-793
[5] Zhang Z, Leng W, Cai Q, et al. Study of the zinc electroplating process using electrochemical noise technique [J]. J. Electroanal. Chem., 2005, 578: 357-367
[6] Lafront A, Ghali E, Morales A. Corrosion behavior of two bipolar plate materials in simulated PEMFC environment by electrochemical noise technique [J]. Electrochim. Acta, 2007, 52: 5076-5085
[7] H?rlé S, Malki B, Baroux B. Corrosion current fluctuations at metastable to stable pitting transition of aluminum [J]. J. Electrochem. Soc., 2006, 153: B527-B532
[8] Girija S, Mudali U, Raju V, et al. Determination of corrosion types for AISI type 304L stainless steel using electrochemical noise method [J]. Mater. Sci. Eng., 2005, A407: 188-195
[9] Cappeln F, Bjerrum N, Petrushina I. Electrochemical noise measurements of steel corrosion in the molten NaCl-K2SO4 system [J]. J. Electrochem. Soc., 2005, 152: B228-B235
[10] Tan Y, Bailey S, Kinsella B, et al. Mapping corrosion kinetics using the wire beam electrode in conjunction with electrochemical noise resistance measurements [J]. J. Electrochem. Soc., 2000, 147: 530-539
[11] Girija S, Mudali U, Khatak H, et al. The application of electrochemical noise resistance to evaluate the corrosion resistance of AISI type 304 SS in nitric acid [J]. Corros. Sci., 2007, 49: 4051-4068
[12] Schmitt G. Listen to corrosion at work—A newly developed versatile corrosion monitoring tool ready for plant application [J]. Mater. Corros., 2007, 58: 924-939
[13] Yang Z, Zhang Z, Leng W, et al. In-situ monitoring of nickel electrodeposit structure using electrochemical noise technique [J]. Trans. Nonferrous Met. Soc. China, 2006, 16: 209-216
[14] Wang D, Zhang T, Shao Y, et al. A new criterion to determine the critical pitting temperature (CPT) based on electrochemical noise measurement [J]. Corros. Sci., 2012, 58: 202-210
[15] Yu J, Luo J, Norton P. Investigation of hydrogen-promoted pitting by the electrochemical noise method and the scanning reference electrode technique [J]. Langmuir, 2002, 18: 6637-6646
[16] Zhang J Q, Zhang Z, Wang J M, et al. Analysis and application of electrochemical noise-I. Theory of electrochemical noise analysis [J]. J. Chin. Soc. Corros. Prot., 2001, 21(5): 310-320
(张鉴清, 张昭, 王建明等. 电化学噪声的分析与应用-I. 电化学噪声的分析原理 [J]. 中国腐蚀与防护学报, 2001, 21(5): 310-320)
[17] Zhang J Q, Zhang Z, Wang J M, et al. Analysis and application of electrochemical noise-II. Application of electrochemical noise ana-
lysis [J]. J. Chin. Soc. Corros. Prot., 2002, 22(4): 241-248
(张鉴清, 张昭, 王建明等. 电化学噪声的分析与应用-II. 电化学噪声的应用 [J]. 中国腐蚀与防护学报, 2002, 22(4): 241-248)
[18] Mabbutt S, Simms N, Oakey J. High temperature corrosion monitoring by electrochemical noise techniques [J]. Corros. Eng. Sci. Technol., 2009, 44(3): 186-195
[19] Ashassi-Sorkhabi H, Seifzadeh D, Hosseini M. EN, EIS and polarization studies to evaluate the inhibition effect of 3H-phenothiazin-3-one, 7-dimethylamin on mild steel corrosion in 1 M HCl solution [J]. Corros. Sci., 2008, 50: 3363-3370
[20] Klapper H, Goellner J. Electrochemical noise from oxygen reduction on stainless steel surfaces [J]. Corros. Sci., 2009, 51: 144-150
[21] Cottis R. Interpretation of electrochemical noise data [J]. Corrosion, 2001, 57(3): 265-285
[22] Tan Y, Bailey S, Kinsella B. The monitoring of the formation and destruction of corrosion inhibitor films using electrochemical noise analysis (ENA) [J]. Corros. Sci., 1996, 38: 1681-1695
[23] Mansfeld F, Sun Z, Hsu C, et al. Concerning trend removal in electrochemical noise measurements [J]. Corros. Sci., 2001, 43: 341-352
[24] Bertocci U, Huet F, Nogueira R, et al. Drift removal procedures in the analysis of electrochemical noise [J]. Corrosion, 2002, 58(4): 337-347
[25] Zhang T, Shao Y, Meng G, et al. Electrochemical noise analysis of the corrosion of AZ91D magnesium alloy in alkaline chloride solution [J]. Electrochim. Acta, 2007, 53: 561-568
[26] Cao F, Zhang Z, Su J, et al. Electrochemical noise analysis of LY12-T3 in EXCO solution by discrete wavelet transform technique [J]. Electrochim. Acta, 2006, 51: 1359-1364
[27] Liu X, Zhang T, Shao Y, et al. In-situ study of the formation process of stannate conversion coatings on AZ91D magnesium alloy using electrochemical noise [J]. Corros. Sci., 2010, 52: 892-900
[28] Rosero-Navarro N, Curioni M, Bingham R, et al. Electrochemical techniques for practical evaluation of corrosion inhibitor effectiveness. Performance of cerium nitrate as corrosion inhibitor for AA2024T3 alloy [J]. Corros. Sci., 2010, 52: 3356-3366
[29] Huang J, Qiu Y, Guo X. Comparison of polynomial fitting and wavelet transform to remove drift in electrochemical noise analysis [J]. Corros. Eng. Sci. Technol., 2010, 45(4): 288-294
[30] Nagiub A, Mansfeld F. Evaluation of microbiologically influenced corrosion inhibition using electrochemical noise analysis [J]. Corros. Sci., 2001, 43: 2001-2009
[31] Nagiub A, Mansfeld F. Evaluation of corrosion inhibition of brass in chloride media using EIS and ENA [J]. Corros. Sci., 2001, 43: 2147-2171
[32] Nagiub A, Mansfeld F. Evaluation of microbiologically influenced corrosion inhibition (MICI) with EIS and ENA [J]. Electrochim. Acta, 2002, 47: 2319-2333
[33] Mansfeld F, Han L, Lee C, et al. Analysis of electrochemical impedance and noise data for polymer coated metals [J]. Corros. Sci., 1997, 37(2): 255-279
[34] Xiao H, Han L, Lee C, et al. Collection of electrochemical impedance and noise data for polymer-coated steel from remote test sites [J]. Corrosion, 1997, 53(5): 412-422
[35] Mansfeld F, Lee C, Zhang G. Comparison of electrochemical impedance and noise data in the frequency domain [J]. Electrochim. Acta, 1998, 43(3/4): 435-438
[36] Mansfeld F, Sun Z, Hsu C. Electrochemical noise analysis (ENA) for active and passive systems in chloride media [J]. Electrochim. Acta, 2001, 46: 3651-3664
[37] Morlet J, Arens G, Fourgeau E, et al. Wave propagation and sampling theory—Part II: Sampling theory and complex waves [J] . Geophysics, 1982, 47(2): 222-236
[38] Aballe A, Bethencourt M, Botana F, et al. Wavelet transform-based analysis for electrochemical noise [J]. Electrochem. Commun., 1999, 1: 266-270
[39] Duran O, Vera E, Ortiz C A, et al. Use of the wavelet method for analyzing electrochemical noise data [J]. Mater. Corros., 2007, 58 (12): 997-999
[40] Shi Y, Zhang Z, Su J, et al. Electrochemical noise study on 2024-T3 Aluminum alloy corrosion in simulated acid rain under cyclic wet-dry condition [J]. Electrochim. Acta, 2006, 51: 4977-4986
[41] Liu L, Li Y, Wang F. Pitting mechanism on an austenite stainless steel nanocrystalline coating investigated by electrochemical noise and in-situ AFM analysis [J]. Electrochim. Acta, 2008, 54: 768-780
[42] Dong Z, Guo X, Zeng J, et al. Calculation of noise resistance by use of the discrete wavelets transform [J]. Electrochem. Commun., 2001, 3: 561-565
[43] Cai C, Zhang Z, Cao F, et al. Analysis of pitting corrosion behavior of pure Al in sodium chloride solution with the wavelet technique [J]. J. Electroanal. Chem., 2005, 578: 143-150
[44] Aballe A, Bethencourt M, Botana F, et al. Electrochemical noise applied to the study of the inhibition effect of CeCl3 on the corrosion behaviour of Al-Mg alloy AA5083 in seawater [J]. Electrochim. Acta, 2002, 47: 1415-1422
[45] Zhao B, Li J, Hu R, et al. Study on the corrosion behavior of reinforcing steel in cement mortar by electrochemical noise measurements [J]. Electrochim. Acta, 2007, 52: 3976-3984
[46] Lafront A, Zhang W, Ghali E, et al. Electrochemical noise studies of the corrosion behaviour of lead anodes during zinc electrowinning maintenance [J]. Electrochim. Acta, 2010, 55: 6665-6675
[47] Zhang Z, Leng W, Cai Q, et al. Study of the zinc electroplating process using electrochemical noise technique [J]. J. Electroanal. Chem., 2005, 578: 357-367
[48] Darowicki K, Zakowski K. A new time-frequency detection method of stray current field interference on metal structures [J]. Corros. Sci., 2004, 46: 1061-1070
[49] Yang Y G. In situ study of hydrochloric acid dew point corrosion of carbon steel and stainless steel [D]. Harbin: Harbin Engineering University, 2013
(杨延格. 碳钢及不锈钢盐酸露点腐蚀的原位研究 [D]. 哈尔滨: 哈尔滨工程大学, 2013)
[50] Homborg A, van Westing E, Tinga T, et al. Novel time–frequency characterization of electrochemical noise data in corrosion studies using Hilbert spectra [J]. Corros. Sci., 2013, 66: 97-110
[51] Burstein G, Souto R. Improvement in pitting resistance of stainless steel surfaces by prior anodic treatment in metasilicate solution [J]. J. Electrochem. Soc., 2004, 151(10): B537-B542
[52] Burstein G, Vines S. Repetitive nucleation of corrosion pits on stainless steel and the effects of surface roughness [J]. J. Electrochem. Soc., 2001, 148(12): B504-B516
[53] Burstein G, Liu C, Souto R, et al. Origins of pitting corrosion [J]. Corros. Eng. Sci. Technol., 2004, 39(1): 25-30
[54] Ilevbare G, Burstein G T. The inhibition of pitting corrosion of stainless steels by chromate and molybdate ions [J]. Corros. Sci., 2003, 45: 1545-1569
[55] Williams D, Stewart J, Balkwill P. The nucleation, growth and stability of micropits in stainless steel [J]. Corros. Sci., 1994, 36: 1213-1235
[56] Ilevbare G, Burstein G T. The role of alloyed molybdenum in the inhibition of pitting corrosion in stainless steels [J]. Corros. Sci., 2001, 43: 485-513
[57] Tang Y, Zuo Y, Zhao H. The current fluctuations and accumulated pitting damage of mild steel in NaNO2-NaCl solution [J]. Appl. Surf. Sci., 2005, 243: 82-88
[58] Tang Y, Zhao X, Mao J, et al. The electrochemical characteristics of pitting for two steels in phosphate buffer solution with chloride [J]. Mater. Chem. Phys., 2009, 116: 484-488
[59] Tang Y, Zuo Y, Zhao X. The metastable pitting behaviors of mild steel in bicarbonate and nitrite solutions containing Cl- [J]. Corros. Sci., 2008, 50: 989-994
[60] Tang Y, Zuo Y. The metastable pitting of mild steel in bicarbonate solutions [J]. Mater. Chem. Phys., 2004, 88: 221-226
[61] Wang H, Xie J, Yan K, et al. The nucleation and growth of metastable pitting on pure iron [J]. Corros. Sci., 2009, 51: 181-185
[62] Zuo Y, Wang H, Zhao J, et al. The effects of some anions on metastable pitting of 316L stainless steel [J]. Corros. Sci., 2002, 44: 13-24
[63] Cottis R, Al-Awadhi M, Al-Mazeedi H, et al. Measures for the detection of localized corrosion with electrochemical noise [J]. Electrochim. Acta, 2001, 46: 3665-3674
[64] Sánchez-Amaya J, Cottis R A, Botana F J. Shot noise and statistical parameters for the estimation of corrosion mechanisms [J]. Corros. Sci., 2005, 47: 3280-3299
[65] Al-Mazeedi H, Cottis R. Practical evaluation of electrochemical noise parameters as indicators of corrosion type [J]. Electrochim. Acta, 2004, 49: 2787-2793
[66] Sánchez-Amaya J, Bethencourt M, González-Rovira L, et al. Noise resistance and shot noise parameters on the study of IGC of aluminium alloys with different heat treatments [J]. Electrochim. Acta, 2007, 52: 6569-6583
[67] Zhang J. Research on crevice corrosion behaviour of 5083 and 6061 aluminium alloys [D]. Harbin: Harbin Engineering University, 2013
(张晋. 5083和6061铝合金缝隙腐蚀行为研究 [D]. 哈尔滨: 哈尔滨工程大学, 2013)
[68] Na K, Pyun S. Effect of sulphate and molybdate ions on pitting corrosion of aluminium by using electrochemical noise analysis [J]. J. Electroanal. Chem., 2006, 596: 7-12
[69] Na K, Pyun S. Evaluation of pitting susceptibility of aluminum anodized in borate and phosphate solutions using EN analysis [J]. J. Electrochem. Soc., 2007, 154(7): C355-C361
[70] Na K, Pyun S. Effects of sulphate, nitrate and phosphate on pit initiation of pure aluminium in HCl-based solution [J]. Corros. Sci., 2007, 49: 2663-2675
[71] Na K, Pyun S. Electrochemical noise analysis of corrosion of pure aluminium in alkaline solution in the presence of SO42- ion, NO3-ion and Na2S additives [J]. Electrochim. Acta, 2007, 52: 4363-4373
[72] Na K, Pyun S, Kim H. Analysis of electrochemical noise obtained from pure aluminium in neutral chloride and alkaline solutions [J]. Corros. Sci., 2007, 49: 220-230
[73] Trueman A. Determining the probability of stable pit initiation on aluminium alloys using potentiostatic electrochemical measurements [J]. Corros. Sci., 2005, 47: 2240-2256
[74] Valor A, Caleyo F, Alfonso L, et al. Stochastic modeling of pitting corrosion: A new model for initiation and growth of multiple corrosion pits [J]. Corros. Sci., 2007, 49: 559-579
[75] Engelhardt G, Macdonald D. Unification of the deterministic and statistical approaches for predicting localized corrosion damage. I. Theoretical foundation [J]. Corros. Sci., 2004, 46: 2755-2780
[76] Zhang T, Chen C, Shao Y, et al. Corrosion of pure magnesium under thin electrolyte layers [J]. Electrochim. Acta, 2008, 53: 7921-7931
[77] Zhang T, Liu X, Shao Y, et al. Electrochemical noise analysis on the pit corrosion susceptibility of Mg-10Gd-2Y-0.5Zr, AZ91D alloy and pure magnesium using stochastic model [J]. Corros. Sci., 2008, 50: 3500-3507
[78] Chen C, Zhang T, Shao Y, et al. Corrosion behavior of Mg-10Gd-2Y-0.4Zr alloy under thin electrolyte layers [J]. Mater. Corros., 2010, 61: 388-397
[79] Meng G, Wei L, Shao Y, et al. High pitting corrosion resistance of pure aluminum with nanoscale twins [J]. J. Electrochem. Soc., 2009, 156(8): C240-C245
[80] Meng G, Wei L, Zhang T, et al. Effect of microcrystallization on pitting corrosion of pure aluminium [J]. Corros. Sci., 2009, 51: 2151-2157
[81] Xia D H. Deterioration process and corrosion detection of metal packaging materials [D]. Tianjin: Tianjin University, 2012
(夏大海. 金属包装材料的腐蚀失效过程和腐蚀检测 [D]. 天津: 天津大学, 2012)
[82] Xia D, Song S, Wang J, et al. Determination of corrosion types from electrochemical noise by phase space reconstruction theory [J]. Electrochem. Commun., 2012, 15: 88-92
[83] Legat A, Dole?ek V. Chaotic analysis of electrochemical noise measured on stainless-steel [J]. J. Electrochem. Soc., 1995, 142(6): 1851-1858
[84] Cazares-Ibá?ez E, Vázquez-Couti?o G, García-Ochoa E. Application of recurrence plots as a new tool in the analysis of electrochemical oscillations of copper [J]. J. Electroanal. Chem., 2005, 583: 17-33
[85] García-Ochoa E, González-Sánchez J, Acu?a N, et al. Analysis of the dynamics of intergranular corrosion processof sensitised 304 stainless steel using recurrence plots [J]. J. Appl. Electrochem., 2009, 39: 637-645
[86] Acu?a-González N, García-Ochoa E, González-Sánchez J. Assessment of the dynamics of corrosion fatigue crack initiation applying recurrence plots to the analysis of electrochemical noise data [J]. Int. J. Fatigue, 2008, 30: 1211-1219
[87] López-Meléndez C, Garcia-Ochoa E M, Flores-Zamora M, et al. Dynamic study of current fluctuations of nanostructured films [J]. Int. J. Electrochem. Sci., 2012, 7: 1160-1169
[88] Montalbán L, Aivihentiu P. Recurrence quantification analysis of electrochemical noise data during pit development [J]. Int. J. Bifurcation Chaos, 2007, 17(10): 3725-3728
[89] Yang Y, Zhang T, Shao Y, et al. Effect of hydrostatic pressure on the corrosion behaviour of Ni-Cr-Mo-V high strength steel [J]. Co-
rros. Sci., 2010, 52: 2697-2706
[90] Turcotte D. Fractals and Chaos in Geology and Geophysics [M]. Cambridge: Cambridge University Press, 1997
[91] Zhang L, Zhu X, Zhang Z, et al. Electrochemical noise characteristics in corrosion process of AZ91D magnesium alloy in neutral chloride solution [J]. Trans. Nonferrous Met. Soc. China, 2009, 19: 496-503
[92] Sarmiento E, González-Rodriguez J, Uruchurtu J, et al. Fractal analysis of the corrosion inhibition of carbon steel in a bromide solution by lithium chromate [J]. Int. J. Electrochem. Sci., 2009, 4: 144-155
[93] García-Ochoa E, Corvo F. Copper patina corrosion evaluation by means of fractal geometry using electrochemical noise (EN) and image analysis [J]. Electrochem. Commun., 2010, 12: 826-830
[94] Sarmiento E, González-Rodriguez J, Uruchurtu J. A study of the corrosion inhibition of carbon steel in a bromide solution using fractal analysis [J]. Surf. Coat. Technol., 2008, 203: 46-51
[95] Horváth A, Schiller R. Rescaled range analysis of the corrosion potential noise [J]. Corros. Sci., 2003, 45: 597-609
[96] Luciano G, Traverso P, Letardi P. Applications of chemometric tools in corrosion studies [J]. Corros. Sci., 2010, 52: 2750-2757
[97] Huang J, Guo X, Qiu Y, et al. Cluster and discriminant analysis of electrochemical noise data [J]. Electrochim. Acta, 2007, 53: 680-687
[98] Huang J, Qiu Y, Guo X. Cluster and discriminant analysis of electrochemical noise statistical parameters [J]. Electrochim. Acta, 2009, 54: 2218-2223
[99] Hu Q, Qiu Y, Guo X, et al. Crevice corrosion of Q235 carbon steels in a solution of NaHCO3 and NaCl [J]. Corros. Sci., 2010, 52: 1205-1212
[1] 张震, 吴欣强, 谭季波. 电化学噪声原位监测应力腐蚀开裂的研究现状与进展[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[2] 安朋亮, 梁平, 任建民, 史艳华, 刘峰, 陈思瑶. 高氮奥氏体不锈钢点蚀行为的电化学噪声特征[J]. 中国腐蚀与防护学报, 2018, 38(1): 26-32.
[3] 陈洁净,鞠虹,孙灿,李霞,刘雲飞. 电化学测试技术在垢下腐蚀中的应用[J]. 中国腐蚀与防护学报, 2017, 37(3): 207-215.
[4] 刘士强, 王立达, 宗秋凤, 张成, 刘贵昌. 纯Al表面局部孔蚀的电化学噪声特征分析[J]. 中国腐蚀与防护学报, 2014, 34(2): 160-164.
[5] 石维, 董泽华, 郭兴蓬. 基于Hilbert-Huang变换的电化学噪声解析及其应用[J]. 中国腐蚀与防护学报, 2014, 34(2): 138-146.
[6] 袁玮, 黄峰, 胡骞, 刘静, 侯震宇. 外加拉应力对X80管线钢点蚀电化学行为的影响[J]. 中国腐蚀与防护学报, 2013, 33(4): 277-282.
[7] 常安乐,宋诗哲. 模拟海洋环境浪花飞溅区的金属构筑物腐蚀监检测[J]. 中国腐蚀与防护学报, 2012, 32(3): 247-250.
[8] 李季,赵林,李博文,郑丽群,韩恩厚. 304不锈钢点蚀的电化学噪声特征[J]. 中国腐蚀与防护学报, 2012, 32(3): 235-240.
[9] 石秋梅,邵亚薇,张涛,孟国哲,陈琪昊. 磷酸锌对环氧涂层划痕的保护尺寸研究[J]. 中国腐蚀与防护学报, 2011, 31(5): 389-394.
[10] 唐俊文,邵亚薇,张涛,孟国哲,王福会. 饱和H2S对316L不锈钢腐蚀电化学行为的影响[J]. 中国腐蚀与防护学报, 2010, 30(3): 246-250.
[11] 黄文静;黄华良;邱于兵;陈振宇;郭兴蓬. 尺寸效应对微电极腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2010, 30(2): 141-144.
[12] 翁永基 李维锋 李相怡. 电化学噪声方法比较石油用钢的临界点蚀温度[J]. 中国腐蚀与防护学报, 2009, 29(6): 421-425.
[13] 黄家怿 邱于兵 郭兴蓬. 采用聚类分析研究X70钢在库尔勒土壤中初期电化学噪声特征[J]. 中国腐蚀与防护学报, 2009, 29(6): 453-458.
[14] 韩磊 宋诗哲 张正. 电化学噪声技术在铝合金大气腐蚀检测中的应用[J]. 中国腐蚀与防护学报, 2009, 29(6): 471-474.
[15] 黄家怿 邱于兵 郭兴蓬. 电化学噪声直流漂移的分段多项式拟合消除[J]. 中国腐蚀与防护学报, 2009, 29(1): 9-14.