|
|
H2S/CO2共存体系中钢界面反应的暂态研究 |
王朋飞1;李春福1;邓洪达1;2;崔士华1;陈功剑1;申文竹1 |
1. 西南石油大学油气藏地质及开发工程国家重点实验室 成都610500
2. 重庆科技学院 重庆 401331 |
|
STABILITY OF MELT INTERFACE REACTION IN H2S/CO2 COEXISTENCE ENVIRONMENT |
WANG Pengfei1; LI Chunfu1; DENG Hongda1;2; CUI Sihua1;CHEN Gongjian1; SHEN Wenzhu1 |
1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation; Southwest Petroleum University; Chengdu 610500
2. Chongqing University of Science & Technology; Chongqing 401331 |
引用本文:
王朋飞;李春福;邓洪达;崔士华;陈功剑;申文竹. H2S/CO2共存体系中钢界面反应的暂态研究[J]. 中国腐蚀与防护学报, 2010, 30(2): 97-1000.
YU Peng-Fei,
LI Chun-Fu,
DENG Hong-Ta,
CUI Shi-Hua,
CHEN Gong-Jian.
STABILITY OF MELT INTERFACE REACTION IN H2S/CO2 COEXISTENCE ENVIRONMENT. J Chin Soc Corr Pro, 2010, 30(2): 97-1000.
链接本文:
https://www.jcscp.org/CN/
或
https://www.jcscp.org/CN/Y2010/V30/I2/97
|
[1]Parkins R N. The involvement of hydrogen in low pH stress corrosion cracking of pipeline steel [A]. 12th EPRG/PRCI Biennial Joint Technical Meeting in Line Pipe Research [C].Groninggen, the Netherlands, 1999: 5
[2]Xiao J M. Effect of Stress on Metal Corrosion [M]. Beijing: Chemical Industry Press, 1990
[3](肖纪美. 应力作用下的金属腐蚀 [M]. 北京:化学工业出版社,1990)
[4]Lu Q M. Corrosion and Protection in Oil Industry [M]. Hangzhou:Zhejiang Science and Techonology Press, 1988
[5](卢绮敏. 石油工业中的腐蚀与防护 [M]. 杭州:浙江科学技术出版社, 1988)
[6]Chen C J, Song B H, Xiang C. Progress in the Study of Stress Corrosion Cracking of Metal [M]. Hangzhou: Zhejiang Science and Techonology Press, 1988
[7](陈才金, 宋炳华, 向晨. 金属应力腐蚀开裂研究的进展 [M].杭州:浙江科学技术出版社, 1988)
[8]Tarek M. Susceptibility of 420 Martensitic Stainless steel to cracking in H2S/CO2/Cl environments [D]. Akerta: University of Alberta, 1992,68
[9]Zhu W Y, Qiao L J, Chen Q Z, et al. Cracking and Environment Cracking [M].Beijing: Science Press, 2000
[10](褚武扬, 乔利杰, 陈奇志等.断裂与环境断裂 [M]. 北京:科学出版社,2000)
[11]Qiao L J,Wang Y B,Zhu W Y. Cracking and Environment Cracking [M]. Beijing: Science Press, 1993
[12](乔利杰, 王燕斌, 褚武扬. 应力腐蚀机理 [M].北京: 科学出版社, 1993)
[13] Hara M, Linke U, Wandlowski Th. Preparation and electrochemical characterization of palladium single crystal electrodes in 01M H2SO4 and HClO4. Part I. Low-index phases [J]. Electrochim. Acta, 2007, 52:5733-5748
[14] Ganon J, Clavilier J. Electrochemical adsorption of lead and bismuth at gold single crystal surface with vicinal(111) orientations(I) [J]. Surf. Sci, 1984, 145:487-
[15] Wandlowski Th, Wang J X, Magnussen O M, et al. Structural and kinetic aspects of bromide adsorption on Au(100) [J]. J. Phys. Chem, 1996, 100:10277-10287
[16] Wandlowski Th, Lampner D, Lindsay S M. Structure and stability of cytosine adlayers on Au(111): an in-situ STM study [J]. J. Electroanal.Chem, 1996, 404:215-226
[17] Pronkin S, Wandlowski Th. Time-resolved in situ ATR-SEIRAS study of adsorption and 2D phase formation of uracil on gold electrodes [J]. J. Electroanal. Chem, 2003, 551:131-147
[18]Harrison J A, Thirsk H R, Bard A J. Electron analytical chemistry [M]. New York: Narcel Dekker, 1971: 67
[19]Wandlowski Th, In: Urbakh M, Gileadi E, eds., Encyclopedia of Electrochemistry [M], vol. 1, Weinheim: Wiley-VCH, 2002: 383
[20] Barradas R G, Bosco E J. A kinetic model of multilayer adsorption in electrochemical phase formation [J]. Electroanal. Chem, 1985, 193:23-26 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|