Please wait a minute...
中国腐蚀与防护学报  2006, Vol. 26 Issue (2): 65-69     
  研究报告 本期目录 | 过刊浏览 |
海洋环境中微生物膜吸附动力学过程对钝态金属开路电位变化特征的影响
王伟;王佳;徐海波;李相波
中国海洋大学化学化工学院
Influence of biofilms adsorption kinetics on the open-circuit-potential changes of passive metals in seawater
;;;
中国海洋大学化学化工学院
全文: PDF(170 KB)  
摘要: 采用荧光显微技术研究了自然海水中微生物在两种钝态金属表面的吸附动力学过程与其开路电位正移之间的关系。高钼钢和1Cr18Ni9Ti电极在海水中浸泡了10d左右,1d后现金种钝态金属腐蚀电位正移约200mV。研究发现微生物向钝 态金属表面附着的初期对金属的开路电位影响最大,随后腐蚀电位增加缓慢,在吸附过程中微生物在钝态金属表面附着数量随时间增加呈负指数增长。给出了微生物附着的动力学方程,并对其进行了讨论。两种钝态金属开路电位的变化和其表面微生物数量增加有着相似的趋势。开路电位在微生物附着过程中迅速增加,微生物附着达到平衡后钝态金属开路电位增加缓慢。这说明在微生物附着初期对钝态金属电位正移影响最大,随后阶段影响逐渐减弱。
关键词 微生物膜吸附动力学开路电位海水环境    
Abstract:In seawater the influence of biofilms formation kinetics process on two types of passive metals open circuit potentials (EOCP) were studied. 1Cr18Ni9Ti and high Mo steel coupons were immersed in seawater for about 10 days and EOCP increased for about 200mV after about 1 day.Epifluorescence microscopy observation and EOCP data showed that during the initial bacteria adsorption period that EOCP changed greatly and in the following time EOCP increased slowly. The bacteria amounts on metal surface increased according to an exponential law and its adsorption kinetics at metal surface was proposed. The ennoblement of EOCP was similar to the bacteria number increasing: EOCP increased quickly during bacteria adsorption process and increased slowly after biofilms had formed.
Key wordskinetics of biofilms adsorption    open-circuit-potential    seawater
收稿日期: 2004-12-29     
ZTFLH:  TG172.5  
通讯作者: 王伟      E-mail: wwei@ouc.edu.cn

引用本文:

王伟; 王佳; 徐海波; 李相波 . 海洋环境中微生物膜吸附动力学过程对钝态金属开路电位变化特征的影响[J]. 中国腐蚀与防护学报, 2006, 26(2): 65-69 .
. Influence of biofilms adsorption kinetics on the open-circuit-potential changes of passive metals in seawater. J Chin Soc Corr Pro, 2006, 26(2): 65-69 .

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y2006/V26/I2/65

[1]Kirchman D,Mitchell R.A biochemical mechanisms for marine bio-fouling[A].The Ocean-An International Workplace[C].Boston:Naval Institute Press,1981:537-541
[2]Little B,Wagner P A,Mansfeld F.Microbiologically InfluencedCorrosion[A].Texas,Houston:NACE International,1997:4-7
[3]Xu K,Dexter S C,Luther G W.Voltammetric microelectrodes forbiocorrosion studies[J].Corrosion,1998,54(10):814-823
[4]Mollica A,Trevis A.Correlation between the formation of a primaryfilm and the modification of the cathodic surface steel in seawater[A].Proc.4thInt.Cong.Manne Corrosion and Fouling[C].An-tibes:Juan-Les-Prins,1976:351-365
[5]Dexter S C,Gao G Y.Effect of seawater biofilms on corrosion po-tential and oxygen reduction of stainless steel[J].Corrosion,1988,44(10):717-723
[6]Scotto V,Lai M E.The ennoblement of stainless steel in seawater:a likely explanation coming from the field[J].Corros.Sci.,1998,40(6):1007-1018
[7]Scotto V,Mollica A,et al.Biofilm influence on ennoblement of pas-sive metals[A].Proceeding Second MAST Days and EuropeanMarket[C].Scrrento:Wiley-VCH Press,1995:1060-1073
[8]Scotto V,Lai M E.Marine bacteria involved in the ennoblement ofstainless steel[A].European Federation of Corrosion[C].London:Cambridge University Press,1997:41-49
[9]Belas M R,Colwell R R.Adsorption kinetics of laterally and polarlyflagellated vibrio[J].Journal of Bacteriology,1982,(151):1568-1580
[10]Berkeley R C W,Lynch J M,Melling J,Rutter P R,Vincent B.Microbial Adhesion to Surfaces[M].London:Ellis Horwood Lim-ited,1980:67
[11]Springer E L,Roth I L.The ultrastructure of the capsules of diplo-coccus pneumoniae and klebsiella pnemoniae stained with tutheni-um red[J].Journal of General Microbiology,1973,(74):21-31
[12]Bangham A D,Pethica B A.The adhesiveness of cells and the na-ture of the chemical groups at their surfaces[A].Proceedings ofthe Royal Physical Society of Edinburgh[C].Scotland:The RoyalSociety of Edinburgh Press,1960,(28):43-52
[13]Curtis A S G.Cell contacts:some physical considerations[J].American Naturalist,1960,(94):37-56
[14]Pethica B A.The physical chemistry of cell adhesion[J].Experi-mental Cell Research Supplement,1961,(8):123-140
[1] 王雪莹, 王佳, 刘在健, 丁健, 王海杰. 金属罐内涂层破损区气相定位检测局部电化学探头技术的研究[J]. 中国腐蚀与防护学报, 2015, 35(2): 169-176.
[2] 梁虎, 杜敏, 张有慧. 铝合金牺牲阳极极化性能研究[J]. 中国腐蚀与防护学报, 2014, 34(2): 153-159.
[3] 徐宏妍; 李延斌 . 铝基牺牲阳极在海水中的活化行为[J]. 中国腐蚀与防护学报, 2008, 28(3): 186-192 .
[4] 刘学庆; 唐晓; 王佳 . 金属腐蚀速度与海水环境参数相关模型的人工神经网络分析[J]. 中国腐蚀与防护学报, 2005, 25(1): 11-14 .
[5] 王佳; 李相波; 王伟 . 海水环境微生物附着对钝性金属开路电位的影响[J]. 中国腐蚀与防护学报, 2004, 24(5): 262-266 .