Please wait a minute...
中国腐蚀与防护学报  1999, Vol. 19 Issue (1): 33-38     
  研究报告 本期目录 | 过刊浏览 |
苯胺及其衍生物缓蚀性能与结构参数关系的神经网络研究
胡芳;石鲜明;屈定荣;
湖南大学化学化工学院
STUDIES ON CORROSION INHIBITION OF ANILINE AND ITS DIRIVATIVES BY QUANTUM CHEMICAL CALCULATION AND ARTIFICIAL NEURAL NETWORKS
Fang Hu;;;
湖南大学化学化工学院
全文: PDF(128 KB)  
摘要: 运用人工神经网络研究苯胺及其衍生物在酸性介质中的缓蚀性能与分子结构参数的关系。研究对象包括苯胺在邻、间、对位的氟、氯、溴以及甲基取代物。建立了可用于预测苯胺类衍生物缓蚀效率的预测模型,并对苯胺邻、间、对位的碘、氰、羟基、甲氧基以及胺基取代物的缓蚀效率进行预测。探讨了结构参数对缓蚀剂的影响规律。
关键词 苯胺及其衍生物神经网络缓蚀效率分子结    
Abstract:The approach of neural networks was made on its applications to the correlation between molecular electronic structrue and corrosion inhibition properties of aniline and its halogenated and methylated derivatives with substituents at different positions.It was found by reference [2] that there exists the relation between the inhibitive efficiency of the above compounds in acid media for mild steel and their electronic structures;and a tentative interpretation was given for the phenomenon that when the inhibitiors are substituted with the same kind of substituents at different positions in the molecule,or with different substituents at same position,they exhibit different inhibitive effciency.The mechanism of corrosion inhibition was also wxplained from the point of view of electron transfer and the information provided in that paper could be probably useful for developing new more effective inhibitors.The present authors believe that the molecules of the inhibitors were possibly adsorbed on the surface of iron electrode in horizontal state.The inputs of neural networks included the molecular structure parameters,such as hydrophobic index (π,π-),molar refraction (MR),steric parameter (Es),electronic index (σ,σ*),as well as net charge and πcharge of N atom (qN),and low-unoccupied molecular orbital(LUMO),which could be calculated by means of semi-empirical methods of quantum chemisty,including HMO and CNDO/2 methods.The neural network's outputs were the corrosion-inhibiting efficiencies of aniline and its halogenated and methylated derivatives for mild steel in acid media.The corresponding relationship and modelling prediction were established by using neural networks with 8-15-1 topological structures trained by a modified backpropagation (MBP) algorithm,respectively.The learning precision was high and the predicting performance was excellent.The corrosion inhibiting properties or electrode parameters of some new aniline's derivatives were predicted quantitatively and the results were quite good.
Key wordsneural networks    molecular electronic structure    aniline and its derivatives    lnhibition efficiency
收稿日期: 2005-07-15     
通讯作者: 胡芳   
Corresponding author: Fang Hu   

引用本文:

胡芳; 石鲜明; 屈定荣 . 苯胺及其衍生物缓蚀性能与结构参数关系的神经网络研究[J]. 中国腐蚀与防护学报, 1999, 19(1): 33-38 .
Fang Hu. STUDIES ON CORROSION INHIBITION OF ANILINE AND ITS DIRIVATIVES BY QUANTUM CHEMICAL CALCULATION AND ARTIFICIAL NEURAL NETWORKS. J Chin Soc Corr Pro, 1999, 19(1): 33-38 .

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y1999/V19/I1/33

1Vosta J, Eliasek J, Knizek P. Corrosion, 1976, 32: 183; Corrosion Science; 1971, 11: 223
2张敬畅,曹维良,王作新.中国腐蚀与防护学报,1986,6(3):217
3Martin Y C.Quantitative Drug Design,Marcel Dekker, New York, 1978
4Fujita T,Junkichi Iwasa, Cowin Hansch. J. Am. Chem,Soc., 1964;86:5175
5Kvasnicka V, Sklenak S, Pospichal J.J. Am. Chem. Soc, 1993, 115: 1495
6Simon V, Gasteiger J, Zupan J.J. Am. Chem. Soc., 1993, 115: 9148
[1] 郭宝会, 邱友绪, 李海龙. 人工神经网络在钛合金表面Ni-SiC复合电镀工艺中的应用[J]. 中国腐蚀与防护学报, 2017, 37(4): 389-394.
[2] 刘静,李晓禄,朱崇伟,张涛,曾冠鑫,孟国哲,邵亚薇. 利用人工神经网络技术预测气田环境下316L不锈钢临界点蚀温度[J]. 中国腐蚀与防护学报, 2016, 36(3): 205-211.
[3] 王春霞,陈敬平,张晓红,王赪胤. 溴化N-辛烷异喹啉在盐酸溶液中对Q235碳钢的缓蚀行为[J]. 中国腐蚀与防护学报, 2016, 36(3): 245-252.
[4] 邓志安,李姝仪,李晓坤,王珊,王晓军. 基于模糊神经网络的海洋管线腐蚀速率预测新方法[J]. 中国腐蚀与防护学报, 2015, 35(6): 571-576.
[5] 江依义, 陈宇, 叶正扬, 张昭, 张鉴清. 十七烯基咪唑啉的制备及其缓蚀性能评价[J]. 中国腐蚀与防护学报, 2013, 33(4): 325-330.
[6] 刘月学,刘烈炜,董猛,张大同. 缓蚀剂分子结构与抗硫性能及其缓蚀机理研究[J]. 中国腐蚀与防护学报, 2012, 32(2): 151-156.
[7] 董猛,刘烈炜,刘月学,张大同. 高温高压H2S/CO2环境缓蚀剂分子结构与缓蚀性能关系的研究[J]. 中国腐蚀与防护学报, 2012, 32(2): 157-162.
[8] 孙宝财,李淑欣,俞树荣,曾海龙. 改进BP算法的腐蚀管道剩余强度预测[J]. 中国腐蚀与防护学报, 2011, 31(5): 404-408.
[9] 汪川,王振尧,魏伟,谢陈平,柯伟. 腐蚀研究中的统计分析方法和预测模型[J]. 中国腐蚀与防护学报, 2010, 30(4): 306-312.
[10] 王静,李德刚,于先进,董云会,张丽鹏. 十二烷基硫醇在Fe表面自组装成膜及对其的腐蚀保护[J]. 中国腐蚀与防护学报, 2010, 30(3): 207-212.
[11] 栾瑞鹏,贲可荣,萧 星, 田立业. 基于改进型S算子BP神经网络的钢材大气腐蚀影响因子评估模型[J]. 中国腐蚀与防护学报, 2010, 30(3): 227-230.
[12] 刘威; 赵选民; 邓春龙; 李文军 . 灰色神经网络模型在海水腐蚀预测中的应用[J]. 中国腐蚀与防护学报, 2008, 28(4): 201-204 .
[13] 尹成先; 胥勋源; 李旭; 兰新哲; 冯耀荣 . 新型缓蚀剂TG500在高CO2和Cl-环境中的缓蚀行为[J]. 中国腐蚀与防护学报, 2007, 27(1): 23-26 .
[14] 王海涛; 韩恩厚; 柯伟 . 基于人工神经网络模型的铝合金大气腐蚀的预测[J]. 中国腐蚀与防护学报, 2006, 26(5): 272-274 .
[15] 郁大照; 陈跃良; 段成美 . 基于神经网络的飞机结构腐蚀损伤统计研究[J]. 中国腐蚀与防护学报, 2006, 26(1): 19-21 .