Please wait a minute...
中国腐蚀与防护学报  1997, Vol. 17 Issue (4): 241-247    
  研究报告 本期目录 | 过刊浏览 |
孔蚀保护电位剖析
刘幼平;夏念勇;赵旭晖
北京化工大学;北京100029;北京化工大学;北京100029;北京化工大学;北京100029
ON SIGNIFICANCE OF THE PROTECTION POTENTIAL AGAINST PITTING CORROSION
LIU Youping XIA Nianyong ZHAO Xuhui (Beijing University of Chemical Technology; Beijing 100029)
全文: PDF(498 KB)  
摘要: 

通过实验和理论分析论述了孔蚀保护电位E_p实质上是孔内外间电流的换向电位E_T。当外部电位负于E_T时,流向闭塞区的电流是阴极电流,导致闭塞区pH值上升,Cl~-外迁,发生再钝化。当闭塞区溶液的pH值下降至临界pH值时,E_T有一突降。E_T在数值上等于闭塞区开路电位与内外溶液间扩散电位之差。文中对采用滞后环曲线测量E_p的影响因素及重现性差的原因也作出了解释。

关键词 孔蚀保护电位再钝化闭塞电池    
Abstract

It was demonstrated theoretically and identified experimentally that the protection potential against pitting or crevice corrosion (Ep) was intrinsically the reversal potential of the current between the occluded cell and the external surface (ET). Below ET, the cathodic current flowed into the occluded cell, the pH value of occluded solution increased and Cl- migrated from the occluded cell to outside, resulting in an active-passive transition inside the pit or crevice. A simulated occluded cell was used to determine the ET at different propagating stages of the occluded cell for 1Cr13 and OCrl8Ni9 stainless steels. It was found that ET dropped suddenly as the pH value of occluded solution decreased below a critical value. ET was equal to the difference between the open-circuit potential of the occluded cell and the diffusion potential of the occluded solution into the bulk. The influencing factors of the Ep determintion and its poor reproducibility were also discussed.

Key wordsPitting    Protection potential    Repassivation    Occluded cell
收稿日期: 1997-08-25     
基金资助:

国家自然科学基金;金属腐蚀与防护国家重点实验室项目

引用本文:

刘幼平;夏念勇;赵旭晖. 孔蚀保护电位剖析[J]. 中国腐蚀与防护学报, 1997, 17(4): 241-247.
. ON SIGNIFICANCE OF THE PROTECTION POTENTIAL AGAINST PITTING CORROSION. J Chin Soc Corr Pro, 1997, 17(4): 241-247.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y1997/V17/I4/241

1 刘幼平,朱日彰.化工学报,1995,46(4):487
2 刘幼平.北京化工大学学报,1996,23(2):66
3 Zuo J,Pourbaix M,Liu Y,et al.Corrosion,1995,51(3):177
4 刘幼平,岑晏青,左景伊.中国腐蚀与防护学报,1993,13(4):327
5 刘幼平,周培君,张洁等.中国腐蚀与防护学报,1995,15(1):43
6 Pourbaix M.Corrosion Science,1963,3:239
7 Pourbaix M.Corrosion,1969,25:6
8 Wilde B E,Williams E.Electrochimica Acta,1971,16:1971
[1] 王贵容,邵亚薇,王艳秋,孟国哲,刘斌. 阴极保护电位对破损环氧涂层阴极剥离的影响[J]. 中国腐蚀与防护学报, 2019, 39(3): 235-244.
[2] 吴欣强,付尧,柯伟,徐松,冯兵,胡波涛,陆佳政. 高氮奥氏体不锈钢的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2016, 36(3): 197-204.
[3] 李阳恒,左禹,唐聿明,赵旭辉. 应变作用下Q235碳钢在NaHCO3+NaCl溶液中的孔蚀行为[J]. 中国腐蚀与防护学报, 2016, 36(3): 238-244.
[4] 向超,王家贞,付华萌,韩恩厚,张海峰,王俭秋,张志明. 几种高熵合金在核电高温高压水中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2016, 36(2): 107-112.
[5] 石慧英,唐聿明,左禹. PO43-对304不锈钢在氯离子水溶液中小孔腐蚀形核过程的影响[J]. 中国腐蚀与防护学报, 2013, 33(1): 36-40.
[6] 张胜寒,檀玉,梁可心. 电化学阻抗谱法对304不锈钢孔蚀生长和再钝化阶段的原位研究[J]. 中国腐蚀与防护学报, 2011, 31(2): 130-134.
[7] 郜华萍,吴飞,龙晋明,介星迪,张冬平. 黄磷尾气燃气锅炉的腐蚀行为[J]. 中国腐蚀与防护学报, 2011, 31(1): 51-55.
[8] 张丹峰;谭晓明;马力;陈跃良. 服役环境条件下飞机结构铝合金材料孔蚀规律研究[J]. 中国腐蚀与防护学报, 2010, 30(1): 93-96.
[9] 曲秀华 许淳淳 吕国诚 程海东. 低硬度循环冷却水中Cl-、SO42-及水处理剂对304不锈钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2009, 29(3): 187-190.
[10] 毛健鹏; 唐聿明; 左禹* . X70钢在磷酸盐缓冲溶液中的孔蚀电化学行为研究[J]. 中国腐蚀与防护学报, 2006, 26(2): 80-84 .
[11] 许淳淳; 岳丽杰; 欧阳维真 . 碱性溶液中阴极极化对模拟铸铁文物局部腐蚀闭塞区化学和电化学状态的影响[J]. 中国腐蚀与防护学报, 2005, 25(5): 295-298 .
[12] 曹发和; 张昭; 施彦彦; 张鉴清; 曹楚南 . 电化学噪声频谱的VisonC++实现[J]. 中国腐蚀与防护学报, 2005, 25(1): 7-10 .
[13] 欧阳维真 . 铁器文物在含氯离子水溶液中局部腐蚀闭塞区化学状态的变化[J]. 中国腐蚀与防护学报, 2004, 24(6): 364-367 .
[14] 任建军; 左禹 . 铝阳极氧化膜的蚀孔形貌与蚀孔生长机理研究[J]. 中国腐蚀与防护学报, 2003, 23(4): 198-201 .
[15] 许淳淳; 吴小梅 . 几种阴离子对AISI 304不锈钢孔蚀的影响[J]. 中国腐蚀与防护学报, 2003, 23(3): 129-133 .