Please wait a minute...
中国腐蚀与防护学报  1989, Vol. 9 Issue (3): 235-239    
  研究报告 本期目录 | 过刊浏览 |
奥氏体不锈钢应力腐蚀和氢致开裂裂尖区的氢浓度分布
乔利杰;肖纪美;褚武扬;陈廉;刘树望;邹军军
北京钢铁学院;北京钢铁学院;北京钢铁学院;中国科学院金属研究所;中国科学院金属研究所;中国科学院金属研究所
CONCENTRATION DISTRIBUTION OF HYDROGEN AT CRACK TIP OF AUSTENITIC STAINLESS STEEL AFTER STRESS CORROSION AND HYDROGEN CHARGING
Qiao Lijie Xiao Chimei Chu Wuyang (Beijing University of Iron and Steel Technology) Chen Lian Liu Shuwang and Zou Junjun (Institute of Metal Research; Academia Sinica)
全文: PDF(798 KB)  
摘要: <正> 氢在奥氏体不锈钢应力腐蚀中的作用一直为人们所关注。许多工作表明,奥氏体不锈钢在热浓氯化物溶液中发生应力腐蚀时,氢可以进入试样,并对其力学性能和电化学性能产生影响,但尚无证据表明进入试样的氢量足以产生氢致开裂。另一些工作表明,氢致开裂临界应力场强度因子(K_(HIC))高于应力腐蚀开裂的相应值(K_(SCC));阴极极化延缓应力腐蚀,而阳极极化则加速应力腐蚀。就试样内的平均氢浓度来源,前者都明显高于后者,但在裂尖区的局部范围内,氢浓度的大小和分布,还很少有直接的证据。微区定氢大多是在断裂后测定断口上的氢分布,这种在应力松弛后测定的结果并不能反映应力腐蚀开裂时的真实情况。此外,断面粗糙不一,影响因素多,不便于比较。我们根据LT-IA型离子探针仪样品室的特点,设计了一套相应的夹具和试样,首次在带载情况下测定了321不锈钢应力腐蚀和电解充氢裂纹尖端区的氢浓度分布。
Abstract:The concentration distribution of hydrogen at crack tip of austenitic stainless steel 321 after stress corrosion and polarization was determined by LT-1A type Ion Microprobe Mass Analyzer(KYKY). Although the concentration of hydrogen at crack tip after stress corrosion cracking at open circuit or under cathodic polarization is higher than that under anodie polarization, yet the cracking time of the latter is much shorter than that of the former. Although the hydrogen evolved during stress corrosion can enter and can be enriched in the crack tip region, yet the amount of enrichment is not sufficient to cause cracking. It is concluded that anodic dissolution plays a controlling role during stress corrosion cracklng of this system.
收稿日期: 1989-06-25     

引用本文:

乔利杰;肖纪美;褚武扬;陈廉;刘树望;邹军军. 奥氏体不锈钢应力腐蚀和氢致开裂裂尖区的氢浓度分布[J]. 中国腐蚀与防护学报, 1989, 9(3): 235-239.
. CONCENTRATION DISTRIBUTION OF HYDROGEN AT CRACK TIP OF AUSTENITIC STAINLESS STEEL AFTER STRESS CORROSION AND HYDROGEN CHARGING. J Chin Soc Corr Pro, 1989, 9(3): 235-239.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y1989/V9/I3/235

[1] Seys, A. A., et al. Corrosion, 30, 47(1974)
[2] 乔利杰,褚武扬,肖纪美,黄华,中国腐蚀与防护学报,8(2) ,148(1988)
[3] 乔利杰,褚武扬,肖纪美,金属学报,23,A228(1987)
[4] 褚武扬,王核力,肖纪美,金属学报,21,A86(1985)
[5] 乔利杰,褚武扬,肖纪美,陆建栋。中国腐蚀与防护学报,6(6) ,273(1986)
[6] Williams, P., et al. Analy. Chem., 48, 964(1976)
[7] 黄显亚,朱祖芳,肖纪美。金属学报,20,A182(1984)
[8] Tsuru, T., Latanision, R. m., Scripta metall., 16, 575(1982)
[9] Lin, L.; Huang X., Hsian, C., Scripta Metall. 16, 1387(1982)
[10] Zhao, K.; Xiao, J.; Hu, M., Werkstoffe. und Korrosion, 36,117(1985)
[11] 懒和怡,刘国勋译,《合金扩散和热力学》,冶金工业出版社,P55.
[12] Zakroczymski, T., Szklarska-Smialawska, Z and Smialowski M, Corrosion, 39, 207 (1983)
[13] 白清溪,褚武扬,肖纪美,北京钢铁学院学报,9,84(1987)
[14] Wagenblast, H and Wriedt, H. A., Metall Trans. A, 2, 1393(1971)
[15] 姚京,褚武扬,肖纪美,金属学报,20,A124(1984
No related articles found!