Please wait a minute...
中国腐蚀与防护学报  1984, Vol. 4 Issue (3): 179-186    
  研究报告 本期目录 | 过刊浏览 |
稳定奥氏体不锈钢氢渗透的研究
赵克清;肖纪美;胡茂圃
鞍钢钢铁研究所;北京钢铁学院;北京钢铁学院
INVESTIGATION ON THE PERMEATION BEHAVIOR OF HYDROGEN IN STABLE AUSTENITIC STAINLESS STEEL
Zhao Keqing (Anshan Research Institute of Iron and Steel) Xiao Jimei Hu Maopu (Beijing University of Iron and Steel Technology)
全文: PDF(1477 KB)  
摘要: 本文用电化学氢渗透法,研究了钝化膜、极化电位及介质中pH值对氢在稳定奥氏体不锈钢中渗透行为的影响。测定了氢在310奥氏体不锈钢中25℃时的扩散系数为(1.2±0.1)×10~(-8)cm~2/sec;估算了氢在钝化膜中的扩系散数约为10~(-8)cm~2/sec数量级。随着介质中pH值的降低,氢渗透的饱和电流增加。不仅阴极极化可增加氢渗透的饱和电流;当电位超过点蚀击穿电位后,阳极极化也可增加氢渗透的饱和电流。充氢后试样在0.1NH_2SO_4溶液中的阳极极化曲线显著地向右移动;充氢后的固溶处理试祥,也具有明显的晶间腐蚀倾向。
Abstract:Electrochemical method was used to study the effects of the passive film, polarization potential and the pH value of the solution on the permeation behavior of hydrogen in a stable austenitic stainless steel 310. The diffusion coefficient of hydrogen at 25℃ in this steel was determined to be(1.2+0.1)×10~-8cm~2/sec,and that of the passive film was estimated to be about 10~(-17)cm~2/sec. The saturated hydrogen permeation current increased with the decrease of the pH value of the solution; it also increased not only with the increase of cathodic polarization potential, but also with the increase of anodic polarization potential if it is above the breakdown potential of the passive film. The anodic polarization curves of the hydrogen charged specimens in 0.1N H_2SO_4 solution were shifted to the right, i. e., hydrogen increases the anodic reactivity of the austenitic stainless steel. Furthermore, hydrogen charged solution treated specimens exhibited a tendency toward intergranular corrosion.
收稿日期: 1984-06-25     

引用本文:

赵克清;肖纪美;胡茂圃. 稳定奥氏体不锈钢氢渗透的研究[J]. 中国腐蚀与防护学报, 1984, 4(3): 179-186.
. INVESTIGATION ON THE PERMEATION BEHAVIOR OF HYDROGEN IN STABLE AUSTENITIC STAINLESS STEEL. J Chin Soc Corr Pro, 1984, 4(3): 179-186.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y1984/V4/I3/179

[1] Vaughan, D. A.; Phalen, D. I.; Peterson, C. L.; Boyd, W. K., Corrosion, 19, 315t, (1963)
[2] Forchhammes, P.; Engell, H. J., Werkstoff und Korrosion, 20, 1(1969)
[3] Nielsen, N. A., J. Materials, 5, 794(1970)
[4] Seys, A. A.; Brabers, M. J.; Van Haute, A. A., Corrosion, 30, 47(1974)
[5] Keys, L. H.; Kemp, H.; Bursle, A. J., in "Effects of Chemical Environment on Fracture Process" , Ed. by Osborn, C. J. and Gifkins, R. C., 122(1974)
[6] Shively, J. H.; Hehemann, R. F.; Troiano, A. R., Corrosion, 22, 253, (1966) 23, 215(1967)
[7] Whiteman, M. B.; Troiano, A. R., Corrosion, 21, 53(1965)
[8] Holzworth, M. L., Corrosion, 21, 107(1969)
[9] Okada, H.; Hosoi, Y.; Abe, S. Corrosion, 26, 183(1970)
[10] Kolt, J., in "Stress Corrosion-New Approaches" , Ed. by Craig, Jr., H. LASTM STPS, 610, 366, (1976)
[11] Hasegsawa, M.; Osawa, M., Corrosion, 36, 67(1980)
[12] Rhodse, P. R., Corrosion, 25, 462(1969)
[13] Geller, w.; Sun, T., Archlv Eisenhiittenw., 21, 423(1950)
[14] Staehle, R. W., in "The Theory of Stress Corrosion Cracking in Alloys" , Ed;. by Scully, J. C., NATO, 240, (1971)
[15] Devanathan, M. A. V.; Stachurski, Z., Proc. Roy. Soc., london, 270, 90(1962)
[16] Heiderbach. R.; Jones, J.; Surkein, M., "Hydrogen in Metals", hoc. Znd. Intern, Congress, Paris, 4A3(1978)
[17] ASTM, 1976 Annual Book of ASTM Standard, G5~72, USA, (1976)
[18] Pecker, D.; Bernstein, I. M., "Handbook of Stainless Steels", McGraw-Hill Book Co., 16~5(1977)
[19] Fontana, M. G., Met. Trans., 1, 3260(1970)
[20] Wood, G. C., Corrosion Sci., 2, 173(1961)
[21] Piggot, M. R.; Siarkowski, A. C., J. Iron Steel Inst., 201, 901(1972)
[22] Zakroczymski, T.; Smialowska, Z. S.; Smialowski, M., Welkstoff und Korrosion, 26, 617(1975)
[23] Brown, B. F., in "The Theory of Stress Corrosion Cracking in Alloys" , Ed. by Scully, J. C., NATO, 196(1971)
[24] Marek, M.; Hochman, R. F., Corrosion, 26, 55(1970)
[25] Lukomski, N.; Bohnenkampf, K., Werkstoff und Koirosion, 30, 482(1979)
No related articles found!