Please wait a minute...
中国腐蚀与防护学报  1983, Vol. 3 Issue (1): 1-9    
  研究报告 本期目录 | 过刊浏览 |
电化学技术测氢渗透瞬变行为研究钢的氢脆——环境因素对钢的抗硫化物应力开裂性能的影响
徐克薰;苏立民;孔繁娣
上海材料研究所;上海材料研究所;上海材料研究所
AN INVESTIGATION OF HYDROGEN EMBRITTLEMENT IN STEEL WITH THE TECHNIQUE OF ELECTROCHEMICAL MEASUREMENT ON HYDROGEN PERMEATION TRANSIENT——THE EFFECT OF ENVIRONMENTAL FACTORS ON SULFIDE STRESS CRACKING OF STEEL
Xu Kexun Su Limin and Kong Fandi(Shanghai Research Institute of Materials)
全文: PDF(785 KB)  
摘要: 本文用电化学技术测氢渗透瞬变曲线的方法,研究了pH、H_2S浓度、温度、NaCl浓度及电位等环境因素对钢在硫化物应力开裂中氢渗入钢难易的影响。 研究结果表明,用这一方法所得到的结论,与前人用传统的定载荷拉伸、定变形弯曲或其它方法试验所得的结论平行不悖,因此,认为用电化学技术测氢渗透瞬变行为,对研究环境因素对钢的抗硫化物应力开裂影响,将是一种有用的手段。
Abstract:An electrochemical hydrogen permeation transient method was used to study the effect of environmental factors, such as pH.concentration of H_2S, temperature, concentration of NaCl and electrode potential, on the hydrogen entry in sulfide stress cracking (SSC) of steel. Experimental data showed that the conclusions obtained agree with those published in literature by various authors as obtained by traditional constant load, constant deflection or other methods.Accordingly, the authors hold that the electrochemical hydrogen permeation transient method would be a very useful means in studying the effect of environmental factors on SSC.
收稿日期: 1983-02-25     

引用本文:

徐克薰;苏立民;孔繁娣. 电化学技术测氢渗透瞬变行为研究钢的氢脆——环境因素对钢的抗硫化物应力开裂性能的影响[J]. 中国腐蚀与防护学报, 1983, 3(1): 1-9.
. AN INVESTIGATION OF HYDROGEN EMBRITTLEMENT IN STEEL WITH THE TECHNIQUE OF ELECTROCHEMICAL MEASUREMENT ON HYDROGEN PERMEATION TRANSIENT——THE EFFECT OF ENVIRONMENTAL FACTORS ON SULFIDE STRESS CRACKING OF STEEL. J Chin Soc Corr Pro, 1983, 3(1): 1-9.

链接本文:

https://www.jcscp.org/CN/      或      https://www.jcscp.org/CN/Y1983/V3/I1/1

[1] R. S. Treseder and T. M. Swanson, Corrosion, 24, 2, 31~37 ( 1968 )
[2] E. C. Greco and W. B. Wright, Corrosion, 18, 3, 119t~124t ( 1962)
[3] R. L. McGlasson and W. D. Greathouse, Corrosion, 15, 8, 437t~442t ( 1959 )
[4] C. M. Hudgins, R. L. McGlasson, P. Mehdiyadeh and W. M. Rosborough , Corrosion, 22, 8, 238~251(1966)
[5] L. M. Dvoracek, Corrosion, 26, 5, 177~188(1970)
[6] J. B. Greer, Materials Performance, 14, 3, 11~22(1975)
[7] E. Snape, Br. Corros. J., 4, Sept. ,253~259 ( 1969 )
[8] 殷德芳、阎永京,上海材料研究所九室,45号钢的硫化物应力腐蚀开裂,未发表(1979)
[9] T. Toh, W. M. Baldwin, Jr., 《Stress Corrosion Cracking and Embrittlement》,W. D. Robertson ed., pp 176~186, John Wiley and Sons, New york ( 1956 )
[10] B. A. Graville, R. G. Baker, F. Watkinson, British Welding Journal, 14, 337~342( 1967 )
[11] H. E. Townsend, Jr., Corrosion, 28, 2, 39~45 ( 1972 )
[12] M. A. V. Devanathan and Z. Stauchurski, Proc. Roy. Soc. ( A ) , 270, 90 ( 1962 )
[13] J. McBreen, W. Beck and L. Nanis, J. Electrochemical Society, 113, 11, 1218~1222( 1966 )
[14] 武汉大学分析教研室编,《化学分析》,上册,北京人民教育出版社,(1975)
[15] M. Smialowski and Z. Szklarska-Smialowska, Bull. Acad. Pol. Sci., CL, Ⅲ, 2, 73( 1954 )引自[16]
[16] J. F. Newman and L. L. Shreir, Corrosion Science, 9, 8, 631~641 ( 1969)
[17] Th. Heumann und E. Domke, 《International Meeting on Hydrogen in Metals》, at Julich, 20~24, Marz 1972, 2, Jiilich(1972) ( Berichte der Kernforschungsanlage Julich Conf-6, 2 )S.492/515.
[18] H . G . Nelson , J . E . Stein, NASA-Report, TND-7265( 1973) 见《Hydrogen in Metals》, 1, 329, Ed. by G. Alefeld and J. Valkl, Springer-Verlag Berlin Heidelberg New york(1978)
[19] J. Y. Choi, Met. Trans., 1, 4, 911~919(1970)
[20] E. Riecke. Arch, Eisenhflttenwes., Bd. 47, Nr. 4, S247~252, (1976)
[21] R. Piontelli, Z. Elektrochem., 55, S. 128(1951)
[22] G. H. Cartledge, J. Phys. Chem., 60, 32(1956)
No related articles found!