Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2018, Vol. 38 Issue (1): 1-10    DOI: 10.11902/1005.4537.2016.216
Orginal Article Current Issue | Archive | Adv Search |
Progress on Influence of Cathodic Polarization on Sulfate-reducing Bacteria Induced Corrosion
Fang GUAN1,2, Xiaofan ZHAI1,2, Jizhou DUAN1,2(), Baorong HOU1,2()
1 Key laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
2 Open Studio for Marine Corrosion and Protection, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
Download:  HTML  PDF(2449KB) 
Export:  BibTeX | EndNote (RIS)      

The paper introduces briefly the ecological and physiological characteristics of SRB and the reliability of cathodic polarization (CP) on metallic material in environment containing SRB with emphasis on the influence of CP on microbiological influenced corrosion, including the impact of CP on susceptibility to hydrogen embrittlement and mechanical properties of metallic material, the ambient environment around metallic structures and the activity of metabolic products of the microorganism. Meanwhile the interaction between SRB and CP was elaborated in details. Finally, the future trend of researches on microbiological influenced corrosion is also given.

Key words:  cathodic polarization      SRB      microbiological influenced corrosion     
Received:  06 November 2016      Published:  13 March 2018
ZTFLH:  TG171  
Fund: Supported by National Natural Science Foundation of China (41576080), National Basic Research Program of China (2014CB643304) and Technology Develop Fund of Shinan district of Qingdao (2014-14-004-ZH)

Cite this article: 

Fang GUAN, Xiaofan ZHAI, Jizhou DUAN, Baorong HOU. Progress on Influence of Cathodic Polarization on Sulfate-reducing Bacteria Induced Corrosion. Journal of Chinese Society for Corrosion and protection, 2018, 38(1): 1-10.

URL:     OR

Fig.1  Electron transmission pathways in SRB-induced sulfate reduction[19]
Fig.2  Water-soluble polysulfides (Psr) generated in the periplasmic space deliver electrons from the cellular metabolic processes to cell-surface-associated iron sulfides at -330 mVSHE: (a) high-resolution TEM images of the cellular surface of MR-1 cells, (b) energy diagram for the electron transfer processes of S. oneidensis MR-1 cells to Fe sulfides[41]
Fig.3  Schematic representation of the interaction between cathodic protection and activity of sulfate reducing bacteria[43]
Fig.4  Schematic representation of DIRB (dissimilatory iron reducing bacteria) and SRB interaction via ferrous sulfates formation during a corrosion process[65]
Fig.5  Thermophilic anaerobic oxidation of methane consortia with HotSeep-1 cells (H) and ANME-1 cells (A)[71]
Fig.6  Simplified scheme of flow of electrons from dissoluing iron into SRB[74]
[1] Buchanan R A, Kovacs A L, Lundin C D, et al.Microbially influenced corrosion of Fe-, Ni-, Cu-, Al-, and Ti-based weldments[J]. Mater. Perform., 1997, 36(6): 46
doi: 10.1023/A:1022620501899
[2] Koch G H,Brongers M P H,Thompson N G,et al.Corrosion cost and preventive strategies in the United States[J]. J. Endocrinol., 2002, 122(1): 23
doi: 10.1677/joe.0.1220023
[3] Zhang F, Liu H W, Chen B, et al.Corrosion inhibition of imidazoline for carbon steel in CO2-saturated artificial sewages with sulfate reduction bacteria[J]. J. Chin. Soc. Corros. Prot., 2015, 35: 156(张帆, 刘宏伟, 陈碧等. CO2和SRB共存产出水中咪唑啉衍生物的环境行为及缓蚀长效性研究[J]. 中国腐蚀与防护学报, 2015, 35: 156)
[4] Liu H W, Zhang F, Wu Y N, et al.Inhibition behavior of dodecylamine inhibitor in oilfield produced water containing saturated CO2 and SRB[J]. Corros. Prot., 2015, 36: 137(刘宏伟, 张帆, 吴亚楠等. 油田产出水中饱和CO2和SRB共存条件下十二胺缓蚀剂的缓蚀行为[J]. 腐蚀与防护, 2015, 36: 137)
[5] Liu H W, Liu H F, Qin S, et al.Investigation of biomineralization induced by sulfate reducing bacteria in sewage gathering pipelines in oilfield[J]. Corros. Sci. Prot. Technol., 2015, 27: 7(刘宏伟, 刘宏芳, 秦双等. 集输管线硫酸盐还原菌诱导生物矿化作用调查[J]. 腐蚀科学与防护技术, 2015, 27: 7)
[6] Liu H W, Xu D K, Dao A Q, et al.Study of corrosion behavior and mechanism of carbon steel in the presence of Chlorella vulgaris[J]. Corros. Sci., 2015, 101: 84
doi: 10.1016/j.corsci.2015.09.004
[7] Liu H F, Gu T Y, Asif M, et al.The corrosion behavior and mechanism of carbon steel induced by extracellular polymeric substances of iron-oxidizing bacteria[J]. Corros. Sci., 2017, 114: 102
doi: 10.1016/j.corsci.2016.10.025
[8] Liu H W, Gu T Y, Zhang G A, et al.Corrosion inhibition of carbon steel in CO2-containing oilfield produced water in the presence of iron-oxidizing bacteria and inhibitors[J]. Corros. Sci., 2016, 105: 149
doi: 10.1016/j.corsci.2016.01.012
[9] Liu H W, Gu T Y, Zhang G A, et al.The effect of magneticfield on biomineralization and corrosion behavior of carbon steel induced by iron-oxidizing bacteria[J]. Corros. Sci., 2016, 102: 93
doi: 10.1016/j.corsci.2015.09.023
[10] Liu H W, Xu D K, Wu Y N, et al.Research progress in corrosion of steels induced by sulfate reducing bacteria[J]. Corros. Sci. Prot. Technol., 2015, 27: 409(刘宏伟, 徐大可, 吴亚楠等. 微生物生物膜下的钢铁材料腐蚀研究进展[J]. 腐蚀科学与防护技术, 2015, 27: 409)
[11] Chen H W.The economic importance and activities of marine sulfate-reducing bactria[J]. J. Oceanogr. Huanghai Bohai Seas, 1998,16(4): 64(陈皓文. 海洋硫酸盐还原菌及其活动的经济重要性[J]. 黄渤海海洋, 1998, 16(4): 64)
[12] Liu H F, Fu C Y, Gu T Y, et al.Corrosion behavior of carbon steel in the presence of sulfate reducing bacteria and iron oxidizing bacteria cultured in oilfield produced water[J]. Corros. Sci., 2015, 100: 484
doi: 10.1016/j.corsci.2015.08.023
[13] Barton L L.Sulfate-Reducing Bacteria[M]. New York: Springer Science & Business Media, 1995
[14] Li Q.Molecular ecological characterization of different treatments on microbial community structure in acid sulfate soil [D]. Hangzhou: Zhejiang University, 2014(李琼. 不同处理方式对酸性硫酸盐土中微生物群落结构的生态学研究 [D]. 杭州: 浙江大学, 2014)
[15] Jiang B, Gong A J, Li X G, et al.The distribution laws of sulfate-reducing bacteria in eight soil corrosion test stations in China[J]. Chem. Bioerg., 2008, 25(4): 54(蒋波, 弓爱君, 李晓刚等. 硫酸盐还原菌在8个土壤试验站中的分布规律研究[J]. 化学与生物工程, 2008, 25(4): 54)
doi: 10.3969/j.issn.1672-5425.2008.04.015
[16] Wang H L, Yang J F.Spatiotemporal distribution of sulfate-reducing bacteria in Xiangshan Bay and related affecting factors[J]. Chin. J. Ecol., 2011, 30: 2857(王海丽, 杨季芳. 象山港海域硫酸盐还原菌的时空分布及其影响因素[J]. 生态学杂志, 2011, 30: 2857)
[17] Zhang X L, Chen Z X, Liu H H, et al.Effect of environment factors on the growth of sulfate-reducing bacteria[J]. J. Chin. Soc. Corros. Prot., 2000, 20: 224(张小里, 陈志昕, 刘海洪等. 环境因素对硫酸盐还原菌生长的影响[J]. 中国腐蚀与防护学报, 2000, 20: 224)
doi: 10.3969/j.issn.1005-4537.2000.04.006
[18] Cai J, Zheng P, Zhang L.Sulfate-reducing bacteria and their metabolic pathway[J]. Bull. Sci. Technol., 2009, 25: 427(蔡靖, 郑平, 张蕾. 硫酸盐还原菌及其代谢途径[J]. 科技通报, 2009, 25: 427)
[19] Zhang P Y, Xu D K, Li Y C, et al.Electron mediators accelerate the microbiologically influenced corrosion of 304 stainless steel by the Desulfovibrio vulgaris biofilm[J]. Bioelectrochemistry, 2015, 101: 14
doi: 10.1016/j.bioelechem.2014.06.010 pmid: 25023048
[20] Horváth J, Novák M.Potential/pH equilibrium diagrams of some Me-S-H2O ternary systems and their interpretation from the point of view of metallic corrosion[J]. Corros. Sci., 1964, 4: 159
doi: 10.1016/0010-938X(64)90016-2
[21] Fischer K P.Cathodic protection in saline mud containing sulfate reducing bacteria[J]. Mater. Perform., 1981, 20(10): 41
[22] Kajiyama F, Okamura K.Evaluating cathodic protection reliability on steel pipe in microbially active soils[J]. Corrosion, 1999, 55: 74
doi: 10.5006/1.3283968
[23] Duan J Z.Microbiologically influenced corrosion of steels in seawater and seamud containing sulfate-reducing bacteria [D]. Qingdao: Institute of Oceanology,Chinese Academy of Sciences, 2003(段继周. 海水和海泥环境中厌氧细菌对海洋用钢微生物腐蚀行为的影响 [D]. 青岛: 中国科学院研究生院 (海洋研究所), 2003)
[24] Starosvetsky D, Starosvetsky J, Armon R, et al.A peculiar cathodic process during iron and steel corrosion in sulfate reducing bacteria (SRB) media[J]. Corros. Sci., 2010, 52: 1536
doi: 10.1016/j.corsci.2010.01.013
[25] General Administration of Quality Supervision,Inspection and Quarantine of the People's Republic of China,Standardization Administration of the People's Republic of China. GB/T 21448-2008 Specification of cathodic protection for underground steel pipelines [S]. Beijing: Standards Press of China, 2008(中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 21448-2008 埋地钢质管道阴极保护技术规范 [S]. 北京: 中国标准出版社, 2008)
[26] Zhang T M, Zhao W M, Guo W, et al.Susceptibility to hydrogen embrittlement of X65 steel under cathodic protection in artificial sea water[J]. J. Chin. Soc. Corros. Prot., 2014, 34: 315(张体明, 赵卫民, 郭望等. 阴极保护下X65钢在模拟海水中的氢脆敏感性研究[J]. 中国腐蚀与防护学报, 2014, 34: 315)
[27] Chang E, Yan Y G, Li Q F, et al.Effects of cathodic polarization on the hydrogen embrittlement sensitivity of 921A steel in sea water[J]. J. Chin. Soc. Corros. Prot., 2010, 30: 83(常娥, 闫永贵, 李庆芬等. 阴极极化对921A钢海水中氢脆敏感性的影响[J]. 中国腐蚀与防护学报, 2010, 30: 83)
[28] Yu L, Duan J Z, Zhao W, et al.Characteristics of hydrogen evolution and oxidation catalyzed by Desulfovibrio caledoniensis biofilm on pyrolytic graphite electrode[J]. Electrochim. Acta, 2011, 56: 9041
doi: 10.1016/j.electacta.2011.05.086
[29] Zhu Y Y.The effects of sulfate reducing bacteria and polarization potential on the stress corrosion cracking sensitivity of 16Mn and API X56 steel in Sea-mud [D]. Qingdao: Institute of Oceanology,Chinese Academy of Sciences, 2007(朱永艳. 硫酸盐还原菌和极化电位对海洋结构用钢在海泥中的应力腐蚀开裂敏感性的影响[D].青岛: 中国科学院研究生院(海洋研究所), 2007)
[30] Edyvean R G J, Benson J, Thomas C J, et al. Biological influences on hydrogen effects in steel in seawater [R]. New Orleans,Louisiana: NACE International, 1997
[31] Grobe S, Prinz W, Schöneich H G, et al.Influence of sulfate-reducing bacteria on cathodic protection[J]. Werk. Korros., 1996, 47: 413
doi: 10.1002/maco.19960470802
[32] Robinson M J, Kilgallon P J.Hydrogen embrittlement of cathodically protected high-strength, low-alloy steels exposed to sulfate-reducing bacteria[J]. Corrosion, 1994, 50: 626
doi: 10.5006/1.3293536
[33] Domżalicki P, Lunarska E, Birn J.Effect of cathodic polarization and sulfate reducing bacteria on mechanical properties of different steels in synthetic sea water[J]. Mater. Corros., 2007, 58: 413
doi: 10.1002/maco.200604024
[34] Lunarska E, Birn J, Domżalicki P.Hydrogen uptake by structural steels at cathodic protection in sea water inoculated with sulfate reducing bacteria[J]. Mater. Corros., 2007, 58: 13
doi: 10.1002/maco.200603980
[35] Wen L J, Gao Z M, Liu Y Y, et al.Effects of applied cathodic potential on susceptibility to hydrogen embrittlement and mechanical properties of Q235 steel[J]. J. Chin. Soc. Corros. Prot., 2013, 33: 271(文丽娟, 高志明, 刘洋洋等. 阴极保护电位对Q235钢氢脆敏感性和力学性能的影响[J]. 中国腐蚀与防护学报, 2013, 33: 271)
[36] De Saravia S G G, De Mele M F L, Videla H A. Scanning electron microscopy study of SRB adherence on cathodically protected stainless steel[J]. Int. Biodeterior. Biodegrad., 1996, 37: 129
doi: 10.1016/0964-8305(96)84377-0
[37] Sun C, Xu J, Wang F H, et al.Effects of SRB on cathodic protection of Q235 steel in soils[J]. Mater. Corros., 2010, 61: 762
doi: 10.1002/maco.200905339
[38] Li Y.Study on the antibacterial mechanism of cathodic polarization[D]. Dalian: Dalian University of Technology, 2013(李雨. 阴极极化的抑菌机理研究 [D]. 大连: 大连理工大学, 2013)
[39] Morris D R, Sampaleanu L P, Veysey D N.The corrosion of steel by aqueous solutions of hydrogen sulfide[J]. J. Electrochem. Soc., 1980, 127: 1228
doi: 10.1149/1.2129861
[40] Shoesmith D W, Taylor P, Bailey M G, et al.The formation of ferrous monosulfide polymorphs during the corrosion of iron by aqueous hydrogen sulfide at 21 ℃[J]. J. Electrochem. Soc., 1980, 127: 1007
doi: 10.1002/chin.198035019
[41] Kondo K, Okamoto A, Hashimoto K, et al.Sulfur-mediated electron shuttling sustains microbial long-distance extracellular electron transfer with the aid of metallic iron sulfides[J]. Langmuir, 2015, 31: 7427
doi: 10.1021/acs.langmuir.5b01033 pmid: 26070345
[42] Refait P, Jeannin M, Sabot R, et al.Electrochemical formation and transformation of corrosion products on carbon steel under cathodic protection in seawater[J]. Corros. Sci., 2013, 71: 32
doi: 10.1016/j.corsci.2013.01.042
[43] Guan F, Zhai X F, Duan J Z, et al.Influence of sulfate-reducing bacteria on the corrosion behavior of high strength steel EQ70 under cathodic polarization[J]. PLoS One, 2016, 11: e0162315
doi: 10.1371/journal.pone.0162315 pmid: 27603928
[44] Sun D J.Study on the inhibition mechanism of biofilm adhesion under cathodic polarization [D]. Dalian: Dalian University of Technology, 2014(孙东菊. 阴极极化对生物膜附着的抑制机制的研究 [D]. 大连: 大连理工大学, 2014)
[45] Esquivel R G, Olivares G Z, Gayosso M J H, et al. Cathodic protection of XL 52 steel under the influence of sulfate reducing bacteria[J]. Mater. Corros., 2011, 62: 61
doi: 10.1002/maco.200905426
[46] Chen X, Wang G F, Gao F J, et al.Effects of sulphate-reducing bacteria on crevice corrosion in X70 pipeline steel under disbonded coatings[J]. Corros. Sci., 2015, 101: 1
doi: 10.1016/j.corsci.2015.06.015
[47] Li G H, Sun C, Qi W Y, et al.Effects of cathodic protection on corrosion of Q235 steel in SRB containing soils[J]. Corros. Sci. Prot. Technol., 2005, 17: 379(李国华, 孙成, 齐文元等. 含硫酸盐还原菌土壤中阴极保护对Q235钢腐蚀的影响[J]. 腐蚀科学与防护技术, 2005, 17: 379)
doi: 10.3969/j.issn.1002-6495.2005.06.002
[48] Dhar H P, Bockris J O, Lewis D H.Cathodic electrochemical process for preventing or retarding microbial and calcareous fouling[P]. U.S. Pat, 4440611, 1984
[49] Littauer E, Jennings D M.Prevention of marine fouling by electrical currents [A]. Proceedings of the 2nd International Congress on Marine Corrosion and Fouling[C]. Athen, 1968: 527
[50] De Mele M F L. Influence of cathodic protection on the initial stages of bacterial fouling [A]. Proceedings of NSF-CONICET Workshop Biocorrosion, Metal/Microbe Interaction[C]. Mar del Plata, Argentina, 1992: 181
[51] Zhao X D, Duan J Z, Yu L, et al.Influence of cathodic protection potential on corrosion of carbon steel in seamud containing SRB[J]. Dev. Appl. Mater., 2008, 23(3): 43(赵晓栋, 段继周, 于林等. 含有硫酸盐还原菌的海泥中阴极保护电位对碳钢腐蚀的影响[J]. 材料开发与应用, 2008, 23(3): 43)
doi: 10.3969/j.issn.1003-1545.2008.03.011
[52] Pons L, Délia M L, Bergel A.Effect of surface roughness, biofilm coverage and biofilm structure on the electrochemical efficiency of microbial cathodes[J]. Bioresour. Technol., 2011, 102: 2678
doi: 10.1016/j.biortech.2010.10.138 pmid: 21131196
[53] Zhao W.The selection and application of electrochemically active microorganisms from marine sediments [D]. Qingdao: Institute of Oceanology, Chinese Academy of Sciences, 2011(赵伟. 海洋沉积物中产电微生物筛选及其应用基础研究 [D]. 青岛: 中国科学院研究生院(海洋研究所), 2011)
[54] Yu L, Duan J Z, Du X Q, et al.Accelerated anaerobic corrosion of electroactive sulfate-reducing bacteria by electrochemical impedance spectroscopy and chronoamperometry[J]. Electrochem. Commun., 2013, 26: 101
doi: 10.1016/j.elecom.2012.10.022
[55] Yu L.The electro-active characteristics of sulfate-reducing bacteria and its influence on the anaerobic corrosion of carbon steels[D]. Qingdao: Institute of Oceanology,Chinese Academy of Sciences, 2011(于林. 硫酸盐还原菌生物膜电活性及腐蚀机理研究 [D]. 青岛: 中国科学院研究生院(海洋研究所), 2011)
[56] Lovley D R.The microbe electric: Conversion of organic matter to electricity[J]. Curr. Opin. Biotechnol., 2008, 19: 564
doi: 10.1016/j.copbio.2008.10.005 pmid: 19000760
[57] Vincent K A, Parkin A, Armstrong F A.Investigating and exploiting the electrocatalytic properties of hydrogenases[J]. Chem. Rev., 2007, 107: 4366
doi: 10.1002/chin.200751261 pmid: 17845060
[58] Guezennec J, Therene M.A study of the influence of cathodic protection on the growth of SRB and corrosion in marine sediments by electrochemical techniques [A]. Sequeira C A C, Tiller A K. Microbial Corrosion 1[M]. London: Elsevier Applied Science, 1988: 256
[59] Hernandez G, Hart W H, Videla H A.Marine biofilms and their influence on cathodic protection: A literature survey[J]. Corros. Rev., 1994, 12: 29
doi: 10.1515/CORRREV.1994.12.1-2.29
[60] Guezennec J.Influence of cathodic protection of mild steel on the growth of sulphate-reducing bacteria at 35 ℃ in marine sediments[J]. Biofouling, 1991, 3: 339
doi: 10.1080/08927019109378187
[61] Villano M, De Bonis L, Rossetti S, et al.Bioelectrochemical hydrogen production with hydrogenophilic dechlorinating bacteria as electrocatalytic agents[J]. Bioresour. Technol., 2011, 102: 3193
doi: 10.1016/j.biortech.2010.10.146 pmid: 21129958
[62] Geelhoed J S, Stams A J M. Electricity-assisted biological hydrogen production from acetate by Geobacter sulfurreducens[J]. Environ. Sci. Technol., 2011, 45: 815
doi: 10.1021/es102842p pmid: 21158443
[63] Parot S, Vandecandelaere I, Cournet A, et al.Catalysis of the electrochemical reduction of oxygen by bacteria isolated from electro-active biofilms formed in seawater[J]. Bioresour. Technol., 2011, 102: 304
doi: 10.1016/j.biortech.2010.06.157
[64] Kakooei S, Ismail M C, Ariwahjoedi B.Mechanisms of microbiologically influenced corrosion: A review[J]. World Appl. Sci. J., 2012, 17: 524
[65] Zegeye A, Huguet L, Abdelmoula M, et al.Biogenic hydroxysulfate green rust, a potential electron acceptor for SRB activity[J]. Geochim. Cosmochim. Acta, 2007, 71(22): 5450
doi: 10.1016/j.gca.2007.08.025
[66] Beese-Vasbender P F, Nayak S, Erbe A, et al. Electrochemical characterization of direct electron uptake in electrical microbially influenced corrosion of iron by the lithoautotrophic SRB Desulfopila corrodens strain IS4[J]. Electrochim. Acta, 2015, 167: 321
doi: 10.1016/j.electacta.2015.03.184
[67] Xu D K, Gu T Y.Carbon source starvation triggered more aggressive corrosion against carbon steel by the Desulfovibrio vulgaris biofilm[J]. Int. Biodeterior. Biodegrad., 2014, 91: 74
doi: 10.1016/j.ibiod.2014.03.014
[68] Sherar B W A, Power I M, Keech P G, et al. Characterizing the effect of carbon steel exposure in sulfide containing solutions to microbially induced corrosion[J]. Corros. Sci., 2011, 53: 955
doi: 10.1016/j.corsci.2010.11.027
[69] Zhou M H, Wang H Y, Hassett D J, et al.Recent advances in microbial fuel cells (MFCs) and microbial electrolysis cells (MECs) for wastewater treatment, bioenergy and bioproducts[J]. J. Chem. Technol. Biotechnol., 2013, 88: 508
doi: 10.1002/jctb.4004
[70] Logan B E, Regan J M.Microbial fuel cells—challenges and applications[J]. Environ. Sci. Technol., 2006, 40: 5172
doi: 10.1021/es0627592 pmid: 16999086
[71] Wegener G, Krukenberg V, Riedel D, et al.Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria[J]. Nature, 2015, 526: 587
doi: 10.1038/nature15733 pmid: 26490622
[72] Cordas C M, Guerra L T, Xavier C, et al.Electroactive biofilms of sulphate reducing bacteria[J]. Electrochim. Acta, 2008, 54: 29
doi: 10.1016/j.electacta.2008.02.041
[73] Little B J, Wagner P A.The interrelationship between marine biofouling and cathodic protection [A]. Proceedings of NACE Corrosion 1993[C]. Houston, 1993
[74] Venzlaff H, Enning D, Srinivasan J, et al.Accelerated cathodic reaction in microbial corrosion of iron due to direct electron uptake by sulfate-reducing bacteria[J]. Corros. Sci., 2013, 66: 88
doi: 10.1016/j.corsci.2012.09.006
[75] Nekoksa G, Gutherman B.Cathodic protection criteria for controlling microbially influenced corrosion in power plants [R]. Palo Alto, CA: EPRI, 1991
[76] Dinh H T, Kuever J, Mußmann M, et al.Iron corrosion by novel anaerobic microorganisms[J]. Nature, 2004, 427: 829
doi: 10.1038/nature02321 pmid: 14985759
[77] Lens P, O'flaherty V, Moran A P, et al. Biofilms in Medicine, Industry and Environmental Biotechnology: Characteristics, Analysis and Control [M]. London, UK: IWA Publishing, 2003: 11
[78] Hotter P.Encyclopaedia of Environmental Microbiology[M]. New Delhi: Ivy, 2002
[1] Teng LI, Weiliang JIN, Chen XU, Jianghong MAO. Determination of Steady Critical Current Density of Hydrogen Evolution During Electrochemical Repair Process of Reinforced Concrete[J]. 中国腐蚀与防护学报, 2017, 37(4): 382-388.
[2] Jinheng LUO,Congmin XU,Dongping YANG. Stress Corrosion Cracking of X100 Pipeline Steel in Acid Soil Medium with SRB[J]. 中国腐蚀与防护学报, 2016, 36(4): 321-327.
[3] Wang GUO,Weimin ZHAO,Timing ZHANG,Tianhai DU,Yong WANG. Hydrogen Permeation Behavior of X80 Steel under Cathodic Polarization and Stress[J]. 中国腐蚀与防护学报, 2015, 35(4): 353-358.
[4] CHEN Bi, ZHENG Bijuan, ZHANG Fan, LIU Hongfang. Corrosion Behavior of HSn70-1 Copper Alloy in SRB Containing Medium in Atatic Magnetic Field[J]. 中国腐蚀与防护学报, 2014, 34(4): 339-345.
[5] ZHANG Timing, ZHAO Weimin, GUO Wang, WANG Yong. Susceptibility to Hydrogen Embrittlement of X65 Steel Under Cathodic Protection in Artificial Sea Water[J]. 中国腐蚀与防护学报, 2014, 34(4): 315-320.
[6] LIU Tong, ZHANG Yanfei, CHEN Xu, WANG Dan, CHEN Yu, WANG Guangfu. Effect of SRB on Corrosion Behavior of X70 Steel in a Simulated Soil Solution[J]. 中国腐蚀与防护学报, 2014, 34(2): 112-118.
[7] LI Ximing, ZHANG Chunyan, ZHU Hui, SUN Cheng, XU Jin, XIAN Jun, WANG Wenbin, YU Changkun. EFFECT OF UREA ON MICROBIAL CORROSION BEHAVIOR OF Q235 STEEL IN SOIL[J]. 中国腐蚀与防护学报, 2012, 32(5): 397-402.
[9] CHEN Juan1, LEI Yanhua1, GAO Guanhui1, KONG Moli1, YIN Yansheng2. CORROSION BEHAVIOR OF Cu-Ni-Sn ALLOY UNDER SULFATE-REDUCING BACTERIABIOFILM[J]. 中国腐蚀与防护学报, 2011, 31(3): 231-235.
[13] . The effect of the sulfate reducing bacteria biofilm on phase boundary between HSn70-1AB copper alloy and solution[J]. 中国腐蚀与防护学报, 2008, 28(5): 265-270 .
[14] ;. Study of influence by sulfate-reducing bacteria on formation of corrosion products on the surface of Q235 steel[J]. 中国腐蚀与防护学报, 2008, 28(5): 299-302 .
[15] ;. Effect of MDOPD on Biofilm Property in Culture Medium Inoculated SRB[J]. 中国腐蚀与防护学报, 2007, 27(3): 167-171 .
No Suggested Reading articles found!