Please wait a minute...
中国腐蚀与防护学报  2009, Vol. 29 Issue (2): 119-122    
  研究报告 本期目录 | 过刊浏览 |
热镀锌层上改进型硅烷膜的耐蚀性能
吴海江1;2;杨飞英1;卢锦堂2
1.湖南科技大学机电工程学院 湘潭 411201
2.华南理工大学材料科学与工程学院 广州 510640
ANTI-CORROSION PERFORMANCE OF THE MODIFIED SILANE FILMS ON HOT-DIP GALVANIZED STEEL
WU Haijiang1;2; YANG Feiying1; LU Jintang2
1. School of Electromechanism Engineering; Hunan University of Science and Technology; Xiangtan 411201
2. College of Materials Science and Engineering; South China University of Technology;Guangzhou 510640
全文: PDF(521 KB)  
摘要: 

采用添加钼酸盐和磷酸盐的改进型硅烷溶液处理热镀锌钢板,应用俄歇电子能谱(AES)技术分析了膜层中元素的分布。结果表明,改进型硅烷膜为双层结构,外层是较厚的C-Si-O,内层是Mo-P-O-Zn复合物。通过中性盐雾实验(NSS)、极化曲线和电化学交流阻抗谱(EIS)研究了膜层的耐蚀性能。结果显示,该膜层的耐蚀能力接近于铬酸盐钝化膜,是替代传统铬酸盐钝化的良好选择。

关键词 热浸镀锌硅烷膜钼酸盐耐蚀性能    
Abstract

Hot-dip galvanized steel samples have been treated in a solution containing molybdate, phosphate and silane. The distribution of the elements in the coating layers has been determined using Auger electron spectroscopy (AES). The corrosion resistance of the treated samples has been compared to that of bare samples after exposure to 5% NaCl solution using polarization curves and electrochemical impedance spectra (EIS) data. The samples have also been exposed to the salt spray test. The results of these tests suggest that the modified silane coating layer is composed of an outer C-Si-O rich layer and an inner Mo-P-O-Zn rich layer and it is a promising candidate for replacing conventional chromate treatments.

Key wordshot dip galvanizing    silane film    molybdate    corrosion resistance
收稿日期: 2007-05-17     
ZTFLH: 

TG174

 
通讯作者: 吴海江     E-mail: haijiang\_wu@126.com
Corresponding author: WU Hai-Jiang     E-mail: haijiang\_wu@126.com

引用本文:

吴海江 杨飞英 卢锦堂. 热镀锌层上改进型硅烷膜的耐蚀性能[J]. 中国腐蚀与防护学报, 2009, 29(2): 119-122.

链接本文:

https://www.jcscp.org/CN/Y2009/V29/I2/119

[1] Eichinger E,Osborne J,Cleave T V. Hexavalent chromium elimination:an aerospace industryprogress report[J]. Met. Finish.,1997,95(3):36-41
[2] Liu L,Hu J M,Zhang J Q,et al. Progress in anti-corrosive treatment of metals by silanization [J]. J. Chin. Soc. Corros. Prot.,2006,26(1):59-64
    (刘,胡吉明,张鉴清等. 金属表面硅烷化防护处理及其研究现状[J]. 中国腐蚀与防护学报,2006,26(1):59-64)
[3] Yuan W,van Ooij W J. Characterization of organofunctional silane films on zinc substrates [J]. J. Colloid Interface Sci.,1997,185(1):197-209
[4] Puomi P. Performance of silane treated primed hot-dip galvanised steel[J]. Anti-Corros. Meth.Mater.,2001,48(1): 7-17
[5] Zhu D Q,van Ooij W J. Enhanced corrosion resistance  of AA 2024-T3 and hot-dip galvanized steel using a mix- ture of bis-[triethoxysilylpropyl]tetrasulfide and bis-[tr- imethoxy-silylpropyl]amine[J]. Electrochim. Acta,2004,49 (7):1113-1125
[6] Montemor M F,Rosqvist A,Fagerholm H,et al. The early corrosion behaviour of hot dip galvanised steel pre-treated with bis-1,2-(triethoxysilyl)ethane[J]. Prog. Org. Coat.,2004,51(3):188-194
[7] Trabelsi W,Dhouibi L,Triki E,et al. An electrochemical and analytical assessment on the early corrosion behaviour of galvanised steel pretreated with aminosilanes[J]. Surf. Coat.Technol.,2005,192 (2):284-290
[8] Treacy G M,Wilcox G D,Richardson M O W. Behaviour  of molybdate-passivated zinc coated steel exposed to cor- rosive chloride environments[J]. J. Appl. Electrochem., 1999,29(5):647-654
[9] Lu J T,Kong G,Chen J H,et al. Growth and corrosion behavior of molybdate passivation film on hot dip galvanized steel[J]. Trans. Nonferrous. Met. Soc. Chin., 2003,13 (1):145-148
[10] Magalhaes A A O,Margarit I C P,Mattos O R. Molybdate conversion coatings on zinc surfaces[J]. J. Electroanal. Chem.,2004,572 (2):433-440
[11] Han K P,Fang J L. XPS and AES studies of anticorrosive colour film on zinc[J]. J. Chin. Soc.Corros. Prot.,1997, 17(1):41-45
     (韩克平,方景礼. 用XPS 和AES 研究锌表面彩色防腐蚀 膜[J].中国腐蚀与防护学报,1997,17(1):41-45)
[12] Amirudin A,Thierry D. Corrosion mechanisms of phosphated zinc layers on steel as substrates for automotive coatings[J]. Prog. Org. Coat.,1996,28(1):59-75
[13] Cachet C,Ganne F,Maurin G,et al. EIS investigation of zinc dissolution in aerated sulfate medium. Part I:bulk zinc[J]. Electrochim. Acta,2001,47(3):509-518
[14] Cachet C,Ganne F,Joiret S,et al. EIS investigation of zinc dissolution in aerated sulphate medium. Part II:zinc coatings[J]. Electrochim. Acta,2002,47(21):3409-3422
[15] Lu J T,Kong G,Chen J H,et al. Passivation of galvanized steel by molybdate[J]. Corros. Sci.Prot. Technol.,2001, 13(1):46-48
     (卢锦堂,孔纲,陈锦虹等. 热镀Zn层钼酸盐钝化工艺[J]. 腐蚀科学与防护技术,2001,13(1):46-48)

[1] 刘海霞, 黄峰, 袁玮, 胡骞, 刘静. 690 MPa级高强贝氏体钢在模拟乡村大气中的腐蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 416-424.
[2] 宋久龙, 陈文革, 雷楠楠. T2铜及QCr0.5铜合金无铬复配钼酸盐钝化研究[J]. 中国腐蚀与防护学报, 2018, 38(2): 210-218.
[3] 黄勇, 王善林, 王帅星, 龚玉兵, 柯黎明. 含硫化物夹杂铁基块体非晶合金在HCl溶液中的腐蚀行为[J]. 中国腐蚀与防护学报, 2018, 38(2): 203-209.
[4] 李广宇, 雷明凯. γΝ相在硼酸溶液中钝化膜的组成及其半导体特性研究[J]. 中国腐蚀与防护学报, 2018, 38(1): 47-53.
[5] 张新芳,欧孝通,刘雷,雷惊雷,李凌杰. 镁合金表面无机-有机杂化硅膜的制备及其防护性能研究[J]. 中国腐蚀与防护学报, 2017, 37(5): 435-443.
[6] 谭何灵,周成,刘希辉,曹国明,张菁. Cr对Q420钢在高盐度大气环境下耐蚀性的影响[J]. 中国腐蚀与防护学报, 2017, 37(3): 267-372.
[7] 徐相英,葛芳芳,李朋,舒瑞,黄峰,李谋成. 非晶Ti-B基涂层的力学和耐蚀性能研究[J]. 中国腐蚀与防护学报, 2016, 36(6): 573-579.
[8] 马旭,李全安,井晓天. 热处理对Mg-10Gd-2.5Nd-0.5Zr合金组织和耐蚀性能的影响[J]. 中国腐蚀与防护学报, 2016, 36(2): 143-149.
[9] 睢文杰,赵文杰,张星,秦立光,彭叔森,乌学东,薛群基. 铜合金表面巯基官能有机硅溶胶-凝胶涂层中TEOS含量对其防腐性能的影响[J]. 中国腐蚀与防护学报, 2016, 36(1): 52-58.
[10] 胡新芳, 李辛庚, 樊志彬, 王晓明, 王学刚. 新型Zn-22Al-Mg-Re合金涂层性能研究[J]. 中国腐蚀与防护学报, 2013, 33(6): 521-526.
[11] 王淑艳,夏永平 刘 莉. C3H8O3含量对AZ91D镁合金微弧氧化过程及膜层特性的影响[J]. 中国腐蚀与防护学报, 2013, 33(3): 235-240.
[12] 王应发,黄国胜,程旭东,李相波,邢路阔,郭娟,马焱. 热喷涂Zn-Ni复合涂层在海水中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2013, 33(1): 29-35.
[13] 肖正涛,李相波,王佳,黄国胜,周雄. 冷喷涂铬锆铜涂层在海水中的耐蚀性能[J]. 中国腐蚀与防护学报, 2012, 32(1): 18-22.
[14] 周贤良,朱敏,薛会斌,彭新元,叶志国. 热轧带钢的初期耐大气腐蚀性能[J]. 中国腐蚀与防护学报, 2011, 31(2): 139-144.
[15] 胡吉明,杨亚琴,张鉴清,曹楚南. 电沉积防护性硅烷薄膜的研究现状与展望[J]. 中国腐蚀与防护学报, 2011, 31(1): 1-9.