Please wait a minute...
中国腐蚀与防护学报  2020, Vol. 40 Issue (1): 63-69    DOI: 10.11902/1005.4537.2019.222
  研究报告 本期目录 | 过刊浏览 |
D-tyrosine对碳钢表面铁细菌生物膜的杀菌增强作用机理研究
胥聪敏(),罗立辉,王文渊,赵苗苗,田永强,宋鹏迪
西安石油大学材料科学与工程学院 西安 710065
Enhancing Sterilization Effect of Bactericide by D-tyrosine to Iron Bacterial Biofilm on Carbon Steel Surface
XU Congmin(),LUO Lihui,WANG Wenyuan,ZHAO Miaomiao,TIAN Yongqiang,SONG Pengdi
School of Materials Science and Engineering, Xi'an Shiyou University, Xi'an 710065, China
全文: PDF(3374 KB)   HTML
摘要: 

采用分子生物学方法、电化学检测方法与表面形貌观察等手段研究了环境友好型的D-tyrosine在抑制和分散腐蚀性铁细菌生物膜菌落中的杀菌增强效果和作用机理。结果表明:D-tyrosine能分解试样表面上的生物膜,使其由附着态转变为浮游态,进入水体,被水中的杀菌剂快速杀灭,进而抑制微生物腐蚀的发生;D-tyrosine+杀菌剂的杀菌效果十分显著,杀菌率可达98.73%,明显优于单加杀菌剂的杀菌效果,且杀菌剂的使用量下降50%~70%。表面分析结果表明,溶液中加入杀菌剂和D-tyrosine后,可使附着在试样表面上的IOB膜快速分解脱落,有效地减缓了腐蚀的发生;腐蚀产物均以Fe的氧化物为主。阻抗谱分析表明,添加D-tyrosine+杀菌剂组合后试样的极化电阻增大,腐蚀速率降低。分析表明,D-tyrosine对杀菌剂的增强效果十分明显,对微生物腐蚀起到很好的抑制减缓作用,有效地缓解了过量杀菌剂引起的微生物抗药性及环境污染问题。

关键词 微生物腐蚀D-tyrosine铁细菌杀菌剂杀菌增强效果    
Abstract

In order to solve the problem of serious environmental pollution caused by traditional chemical sterilization methods, the bactericidal enhancement effect and relevant mechanism of D-tyrosine in inhibiting and dispersing corrosive iron bacteria biofilm were studied by means of molecular biology, electrochemical detection and surface morphology observation. The results showed that D-tyrosine can successfully disperse the biofilm on the surface of the sample, turn which from adherent state to planktonic state entering the water system, thus inhibit the occurrence of microbial corrosion, while the bacteria of the planktonic iron bacteria film can be quickly killed by bactericide in the water. The bactericidal effect of the combined D-tyrosine and bactericide is very remarkable, the bactericidal rate can reach 98.73%, which is better than that of single bactericide, therefore, the dosage of bactericide can be decreased by 50%~70%. The results of surface analysis showed that the corrosion products were mainly iron oxides when bactericides and D-tyrosine were added to the solution, and the product film formed on the sample surface was loose and easy to fall off, which effectively slowed down the corrosion. The impedance spectroscopy showed that the polarization resistance of the sample increased and the corrosion rate decreased after adding D-tyrosine acids and bactericides. The above analysis showed that D-tyrosine had obvious enhancement effect on bactericides, played a very good role in inhibiting the microbial corrosion, and effectively alleviated the problems of microbial drug resistance and environmental pollution caused by the application of excessive microbicides.

Key wordsmicrobiologically influenced corrosion    D-tyrosine    iron bacteria    bactericide    bactericidal enhancement effect
收稿日期: 2019-05-11     
ZTFLH:  TG172.4  
基金资助:国家自然科学基金(21808182);中国石油科技创新基金(2018D-5007-0216);陕西省重点学科专项(YS37020203);陕西省能源化工过程强化重点实验室项目(SXECPI201503);西安石油大学研究生创新与实践能力培养项目(YCS17111007);西安石油大学研究生创新与实践能力培养项目(YCS19113064)
通讯作者: 胥聪敏     E-mail: cmxu@xsyu.edu.cn
Corresponding author: Congmin XU     E-mail: cmxu@xsyu.edu.cn
作者简介: 胥聪敏,女,1977年生,博士,副教授

引用本文:

胥聪敏,罗立辉,王文渊,赵苗苗,田永强,宋鹏迪. D-tyrosine对碳钢表面铁细菌生物膜的杀菌增强作用机理研究[J]. 中国腐蚀与防护学报, 2020, 40(1): 63-69.
Congmin XU, Lihui LUO, Wenyuan WANG, Miaomiao ZHAO, Yongqiang TIAN, Pengdi SONG. Enhancing Sterilization Effect of Bactericide by D-tyrosine to Iron Bacterial Biofilm on Carbon Steel Surface. Journal of Chinese Society for Corrosion and protection, 2020, 40(1): 63-69.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2019.222      或      https://www.jcscp.org/CN/Y2020/V40/I1/63

NumberMixture ratioAnnual corrosion depth / mm·a-1Bactericidal rate / %Corrosion inhibition / %
1No fungicides0.258------
240 mg/L THPS0.19086.6726.36
340 mg/L glutaraldehyde0.21558.3316.67
440 mg/L D-tyrosine0.203021.32
540 mg/L THPS+1 mg/L D-tyrosine0.17898.7331.01
640 mg/L glutaraldehyde+ 1 mg/L D-tyrosine0.18588.3328.30
表1  Q235B碳钢在含青海油田IOB培养基中腐蚀7 d后的失重结果
图1  Q235B碳钢在含青海油田IOB培养基中腐蚀7 d后的宏观形貌
图2  Q235B碳钢在6种溶液中腐蚀7 d后的的SEM像及EDS谱
图3  Q235B碳钢在含IOB培养基中分别腐蚀0、3和7 d后的电化学阻抗谱
图4  Q235B碳钢在含IOB培养基中腐蚀0、3和7 d后的等效电路图
Mixture ratioTime / dMatched circuit diagramRs / Ω·cm2Qf / F·cm-2Rf / Ω·cm2Qdl / F·cm-2Rt / Ω·cm2W
No fungicides added0Fig.4c4.1270.00013------5170.00022
3Fig.4a2.438------0.024284.34---
7Fig.4a1.537------0.0913953---
50 mg/L THPS0Fig.4b2.9790.002052960.006357.4---
3Fig.4a0.4107------0.183625---
7Fig.4a9.12------0.0977543.2---
40 mg/L THPS+1 mg/L D-tyrosine0Fig.4b7.160.00028590.30.0467188.3---
3Fig.4a7.22------0.01973372.8---
7Fig.4b15.680.0000874860.042759.2---
表2  Q235B碳钢在含SRB培养基中腐蚀0、3和7 d后EIS拟合结果
[1] Liu H W, Liu H F. Research progress of corrosion of steels induced by iron oxidizing bacteria [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 195
[1] (刘宏伟, 刘宏芳. 铁氧化菌引起的钢铁材料腐蚀研究进展 [J]. 中国腐蚀与防护学报, 2017, 37: 195)
[2] Li X, Zhu Q J, Zhou N, et al. Oil-gas pipe corrosion and protection [J]. Surf. Technol., 2017, 46(12): 206
[2] (李雪, 朱庆杰, 周宁等. 油气管道腐蚀与防护研究进展 [J]. 表面技术, 2017, 46(12): 206)
[3] Liu H W, Gu T Y, Asif M, et al. The corrosion behavior and mechanism of carbon steel induced by extracellular polymeric substances of iron-oxidizing bacteria [J]. Corros. Sci., 2017, 114: 102
[4] Lv Y L, Liu H W, Xiong F P, et al. Corrosion behavior of X80 pipeline steel in oil-field produced water containing iron oxidizing bacteria [J]. Corros. Sci. Prot. Technol., 2017, 29: 343
[4] (吕亚林, 刘宏伟, 熊福平等. 铁氧化菌对X80管线钢腐蚀行为的影响 [J]. 腐蚀科学与防护技术, 2017, 29: 343)
[5] Sun F Y, Zhao G X, Yang D P, et al. Microbiological corrosion characteristics of 2507 duplex stainless steel in circulating cooling water [J]. Surf. Technol., 2015, 44(6): 70
[5] (孙福洋, 赵国仙, 杨东平等. 循环冷却水中2507双相不锈钢微生物腐蚀研究 [J]. 表面技术, 2015, 44(6): 70)
[6] Li F X, Wang Z K, Liu H L, et al. Corrosion and sterilization of pipelines by bacteria [J]. Oil-Gasfield Surf. Eng., 2014, 33(9): 22
[6] (李凤霞, 王郑库, 刘虹利等. 细菌对管道的腐蚀及杀菌实验 [J]. 油气田地面工程, 2014, 33(9): 22)
[7] Liu H W, Xu D K, Wu Y N, et al. Research progress in corrosion of steels induced by sulfate reducing bacteria [J]. Corros. Sci. Prot. Technol., 2015, 27: 409
[7] (刘宏伟, 徐大可, 吴亚楠等. 微生物生物膜下的钢铁材料腐蚀研究进展 [J]. 腐蚀科学与防护技术, 2015, 27: 409)
[8] Zhou P, Qin S, Ye Q, et al. Monitoring and controlling growth of biofilm on carbon steel surface in oilfield sewage [J]. Mater. Prot., 2013, 46(11): 20
[8] (周平, 秦双, 叶琴等. 油田污水中碳钢表面生物膜的生长监测与控制 [J]. 材料保护, 2013, 46(11): 20)
[9] Ji F, Chen B L, Liang Y. Roles of D-amino acids on the physiological structure and regulatory function of bacteria [J]. Acta Microbiol. Sin., 2018, 58: 2078
[9] (纪芳, 陈博磊, 梁勇. D-氨基酸在细菌生理中的结构性能和调节功能的研究进展 [J]. 微生物学报, 2018, 58: 2078)
[10] Xing S F. Regulation mechanism research for the effect of D-amino acids on biofilm formation processes [D]. Ji'nan: Shandong University, 2014
[10] (邢苏芳. D-氨基酸对生物膜形成过程的调控机理研究 [D]. 济南: 山东大学, 2014)
[11] Cava F, Lam H, de Pedro M A, et al. Emerging knowledge of regulatory roles of D-amino acids in bacteria [J]. Cell. Mol. Life Sci., 2011, 68: 817
[12] Xu D, Li Y, Gu T. D-methionine as a biofilm dispersal signaling molecule enhanced tetrakis hydroxymethyl phosphonium sulfate mitigation of Desulfovibrio vulgaris biofilm and biocorrosion pitting [J]. Mater. Corros., 2014, 65: 837
[13] Li E E. Effects of D-amino acids and AI-2 on biofilm and corrosion behavior of marine microorganisms [D]. Qingdao: University of Chinese Academy of Sciences (Institute of Oceanology, Chinese Academy of Sciences), 2018
[13] (李娥娥. D-氨基酸和AI-2对海洋环境微生物生物膜与腐蚀行为的影响 [D]. 青岛: 中国科学院大学 (中国科学院海洋研究所), 2018)
[14] Zhang X. Study on the mechanism of inhibition and decomposition of biofilms in water system by D-amino acids [D]. Xi’an: Xi’an Shiyou University, 2018
[14] (张璇. D-氨基酸对水系统中生物膜的抑制与分解机理研究 [D]. 西安: 西安石油大学, 2018)
[15] Li X X, Wang H B, Hu X X, et al. Characteristics of corrosion sales and biofilm in aged pipe distribution systems with switching water source [J]. Eng. Fail. Anal., 2016, 60: 166
[16] Mahdi E, Rauf A, Eltai E O. Effect of temperature and erosion on pitting corrosion of X100 steel in aqueous silica slurries containing bicarbonate and chloride content [J]. Corros. Sci., 2014, 83: 48
[17] Cui Z Y, Wang L W, Liu Z Y, et al. Influence of alternating voltages on passivation and corrosion properties of X80 pipeline steel in high pH 0.5 mol·L-1 NaHCO3+0.25 mol·L-1 Na2CO3 solution [J]. Corros. Eng. Sci. Technol., 2015, 50: 248
[1] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[2] 张雨轩, 陈翠颖, 刘宏伟, 李伟华. 铝合金霉菌腐蚀研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[3] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[4] 王玉, 吴佳佳, 张盾. 海水环境中异化铁还原菌所致金属材料腐蚀的研究进展[J]. 中国腐蚀与防护学报, 2020, 40(5): 389-397.
[5] 卫晓阳,杨丽景,吕战鹏,郑必长,宋振纶. 磁场对纯Cu微生物腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 484-494.
[6] 吴堂清,周昭芬,王鑫铭,张德闯,尹付成,孙成. 微生物致裂的热力学和动力学分析[J]. 中国腐蚀与防护学报, 2019, 39(3): 227-234.
[7] 史显波,杨春光,严伟,徐大可,闫茂成,单以银,杨柯. 管线钢的微生物腐蚀[J]. 中国腐蚀与防护学报, 2019, 39(1): 9-17.
[8] 李鑫,陈旭,宋武琦,杨佳星,吴明. pH值对X70钢在海泥模拟溶液中微生物腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 565-572.
[9] 管方, 翟晓凡, 段继周, 侯保荣. 阴极极化对硫酸盐还原菌腐蚀影响的研究进展[J]. 中国腐蚀与防护学报, 2018, 38(1): 1-10.
[10] 梅朦, 郑红艾, 陈惠达, 张鸣, 张大全. 硫酸盐还原菌对Cu在循环冷却水中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2017, 37(6): 533-539.
[11] 陈菊娜,吴佳佳,王鹏,张盾. 脱硫弧菌和溶藻弧菌对船体结构材料907钢海水腐蚀行为的影响研究[J]. 中国腐蚀与防护学报, 2017, 37(5): 402-410.
[12] 刘宏伟,刘宏芳. 铁氧化菌引起的钢铁材料腐蚀研究进展[J]. 中国腐蚀与防护学报, 2017, 37(3): 195-206.
[13] 吕亚林,郑碧娟,刘宏伟,熊福平,刘宏芳,胡裕龙. 磁场对硫酸盐还原菌生物膜在304不锈钢表面吸附性能的影响[J]. 中国腐蚀与防护学报, 2016, 36(6): 652-658.
[14] 李克娟, 郑碧娟, 陈碧, 刘宏芳. 磁场对Q235钢微生物腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2013, 33(6): 463-469.
[15] 柴柯, 罗琦, 吴进怡. 海水及培养基中假单胞菌对45钢电化学腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2013, 33(6): 481-490.