Please wait a minute...
中国腐蚀与防护学报  2017, Vol. 37 Issue (3): 300-304    DOI: 10.11902/1005.4537.2016.151
  本期目录 | 过刊浏览 |
L245钢在不同温度下的油气田模拟水中的腐蚀行为研究
朱明(),余勇,张慧慧
西安科技大学材料科学与工程学院 西安 710054
Corrosion Behavior of L245 Steel in Simulated Oilfield Produced Water at Different Temperatures
Ming ZHU(),Yong YU,Huihui ZHANG
College of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
全文: PDF(1556 KB)   HTML
摘要: 

采用浸泡失重法、动电位极化曲线和电化学阻抗技术研究了L245钢在不同温度下的油气田模拟水中的腐蚀行为,采用SEM分析了腐蚀产物的表面形貌。结果表明:在饱和CO2条件的溶液中,当温度从30 ℃升高至90 ℃时L245钢的腐蚀电流从66.1 μAcm-2升高到177 μAcm-2,说明L245钢在高温下反应比较剧烈。当温度从30 ℃升高至90 ℃时L245钢的电荷转移电阻从5155 Ωcm2减小到1182 Ωcm2,说明温度的升高减小了腐蚀反应的阻力。以上结果表明,在30~90 ℃时L245钢在油气田模拟水中的腐蚀速率随着温度的升高而加快,当温度升高至60 ℃时开始发生局部腐蚀并随着温度升高而加剧。

关键词 L245钢油田模拟水温度腐蚀速率    
Abstract

The corrosion behavior of L245 steel in simulated oilfield produced water was investigated by means of weight loss measurement, polarization curve measurement, electrochemical impedance spectra (EIS) and SEM. The results showed that the corrosion reaction of L245 steel is more intensive at higher temperature. When the temperature of the solution is elevated from 30 ℃ to 90 ℃, the corrosion current density of L245 steel in the solution with saturated CO2 increases from 66.1 μAcm-2 to 177 μAcm-2 while the charge transfer resistance of L245 steel decreased from 5155 Ωcm2 to 1182 Ωcm2. The above results indicated that the corrosivity of oilfield produced water increased with the increasing temperature within the range of 30~90 ℃, localized corrosion of the steel occurred at 60 ℃, then the localized corrosion would be intensified when the temperature is elevated to 90 ℃.

Key wordsL245 steel    simulated oilfield water    temperature    corrosion rate
收稿日期: 2016-09-09     
基金资助:国家自然科学基金(51201131),西安科技大学培育基金(6310214005)和西安科技大学博士启动金(6310115012)

引用本文:

朱明,余勇,张慧慧. L245钢在不同温度下的油气田模拟水中的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37(3): 300-304.
Ming ZHU, Yong YU, Huihui ZHANG. Corrosion Behavior of L245 Steel in Simulated Oilfield Produced Water at Different Temperatures. Journal of Chinese Society for Corrosion and protection, 2017, 37(3): 300-304.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2016.151      或      https://www.jcscp.org/CN/Y2017/V37/I3/300

图1  L245钢在不同温度油气田模拟采出水中浸泡10 d后的腐蚀速率
图2  L245钢在不同温度油气田模拟水中的动电位极化曲线
图3  L245钢在不同温度的油气田模拟水中的Nyquist图和Bode图
图4  L245钢在不同温度的油气田模拟水中电化学阻抗等效拟合电路
T / ℃ ba / mVdec-1 bc / mVdec-1 Ecorr / mV Icorr / μAcm-2
30 160.5 117.5 -807.3 61.1
60 149.4 57.5 -757.3 95.2
90 145.5 54.1 -741.6 177
表1  L245钢在不同温度的油气田采出水中极化曲线拟合结果
T / ℃ Rs / Ωcm2 Cd / μFcm-2 Rt / Ωcm2 Q / μFcm-2(n) Rf / Ωcm2
30 5.6 81 5155 207.5(0.83) 35.1
60 4.1 121 2891 398.5(0.68) 65.3
90 3.5 141 1182 468.9(0.57) 80.5
表2  L245钢在模拟油田采出水中不同温度下电化学阻抗拟合所得电化学参数
图5  L245钢在不同温度的模拟油田采出水中浸泡10 d后的腐蚀形貌
[1] Asperger R G, Teevens P, Ho-Chung-Qui D. Corrosion control and monitoring in gas pipelines and well systems [A]. Proceedings of the Corrosion/87 Symposium on Corrosion, Its Control and Monitori[C]. Houston: NACE, 1989: 34
[2] Zhou X Y.Effects of elemental sulfur and CO2 on P110 steel corrosion behavior [D]. Xi'an: Xi'an University of Technology, 2014
[2] (周学阳. 元素硫和CO2对P110钢腐蚀行为的影响 [D]. 西安: 西安工业大学, 2014)
[3] de Waard C, Milliams D E. Carbonic acid corrosion of steel[J]. Corrosion, 1975, 31: 177
[4] Linter B R, Burstein G T.Reactions of pipeline steels in carbon dioxide solutions[J]. Corros. Sci., 1999, 41: 117
[5] Xia Z, Chou K C, Szklarska-Smialowska Z.Pitting corrosion of carbon steel in CO2-containing NaCl Brine[J]. Corrosion, 1989, 45: 636
[6] Nesic S, Thevenot N, Crolet J L, et al.Electrochemical properties of iron dissolution in the presence of CO2-Basics revisited [A]. Proceedings of the Corrosion 1996[C]. Colorado: NACE International, 1996: 3
[7] Sun Y H, Nesic S.A parametric study and modeling on localized CO2 corrosion in horizontal wet gas flow [A]. Proceedings of the Corrosion/04[C]. Houston: NACE, 2004: 380
[8] Zhang G A, Cheng Y F.Localized corrosion of carbon steel in a CO2-saturated oilfield formation water[J]. Electro. Acta, 2011, 56: 1676
[9] Tang X, Cheng Y F.Localized dissolution electrochemistry at surface irregularities of pipeline steel[J]. Appl. Surf. Sci., 2008, 254: 5199
[10] Lv H C, Zuo Y.Technology of oilfield reinjection water treatment and development trend thereof[J]. Ind. Water Wastewater, 2009, 40(2): 15
[10] (吕慧超, 左岩. 油田回注水处理技术及其发展趋势[J]. 工业用水与废水, 2009, 40(2): 15)
[11] Schmitt G, Rothman B.Corrosion of unalloyed and low alloyed steels in carbonic acid solutions [A]. Corrosion/83[C]. Houston: NACE, 1984
[12] Ikeda A, Ueda M, Mukai S.CO2 Behavior of carbon and Cr steels [A]. Corrosion/83[C]. Houston: NACE, 1984
[13] Zhang G A, Cheng Y F.On the fundamentals of electrochemical corrosion of X65 steel in CO2-containing formation water in the presence of acetic acid in petroleum production[J]. Corros. Sci., 2009, 51: 87
[14] Ne?i? S.Key issues related to modelling of internal corrosion of oil and gas pipelines-a review[J]. Corros. Sci., 2007, 49: 4308
[15] Zhu S D, Yin Z F, Bai Z Q, et al.Influences of temperature on corrosion behavior of P110 steel[J]. J. Chin. Soc. Corros. Prot., 2009, 29: 493
[15] (朱世东, 尹志福, 白真全等. 温度对P110钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2009, 29: 493)
[16] Feng B, Yang M, Li B F, et al.Mechanism and influence factors of CO2 corrosion[J]. Liaoning Chem. Ind., 2010, 39: 976
[16] (冯蓓, 杨敏, 李秉风等. 二氧化碳腐蚀机理及影响因素[J]. 辽宁化工, 2010, 39: 976)
[17] Li J Z, Wang H C, Li N.The hazards and research status of carbon dioxide corrosion in oil and gas[J]. Guangzhou Chem. Ind., 2011, 39(21): 21
[17] (李建忠, 王海成, 李宁. 油气田开发中二氧化碳腐蚀的危害与研究现状[J]. 广州化工, 2011, 39(21): 21)
[1] 贾世超, 高佳祺, 郭浩, 王超, 陈杨杨, 李旗, 田一梅. 再生水水质因素对铸铁管道的腐蚀研究[J]. 中国腐蚀与防护学报, 2020, 40(6): 569-576.
[2] 刘晓, 王海, 朱忠亮, 李瑞涛, 陈震宇, 方旭东, 徐芳泓, 张乃强. 电站用奥氏体耐热钢HR3C与Sanicro25在超临界水中的氧化特性[J]. 中国腐蚀与防护学报, 2020, 40(6): 529-538.
[3] 武栋才,韩培德. 中温时效处理对SAF2304双相不锈钢耐蚀性的影响[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
[4] 陈旭,马炯,李鑫,吴明,宋博. 温度与SRB协同作用下X70钢在海泥模拟溶液中应力腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
[5] 赵国仙,黄静,薛艳. 某油田地面集输管道用材腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 557-562.
[6] 孙永伟,钟玉平,王灵水,范芳雄,陈亚涛. 低合金高强度钢的耐模拟工业大气腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(3): 274-280.
[7] 刘丽,于思荣. 添加Gd对AM60镁合金耐腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2019, 39(2): 185-191.
[8] 李洋, 李承媛, 陈旭, 杨佳星, 王欣彤, 明男希, 韩镇泽. 超级13Cr不锈钢在海洋油气田环境中腐蚀行为灰关联分析[J]. 中国腐蚀与防护学报, 2018, 38(5): 471-477.
[9] 韦鉴峰, 付洪田, 王廷勇, 许实, 王辉, 王海涛. 烧结温度对含石墨烯Ti/IrTaSnSb金属氧化物阳极性能的影响[J]. 中国腐蚀与防护学报, 2018, 38(3): 248-254.
[10] 逄旭光, 刘润青, 王文涛, 史艳华, 李飞, 梁平. 时效温度对S32750超级双相不锈钢组织和抗氢氟酸腐蚀性能的影响[J]. 中国腐蚀与防护学报, 2017, 37(6): 519-525.
[11] 宋丰轩,赵启忠,李飞龙,任月路,黄奎,张新明. 不同时效态7050铝合金板材腐蚀速率测量[J]. 中国腐蚀与防护学报, 2017, 37(3): 287-292.
[12] 张子阳,王善林,章恒瑜,柯黎明. AZ31镁合金搅拌摩擦焊接头腐蚀行为[J]. 中国腐蚀与防护学报, 2017, 37(2): 117-125.
[13] 艾莹珺,杜楠,赵晴,黄世新,王力强,文庆杰. 温度对304不锈钢亚稳蚀孔萌生和稳态蚀孔几何特征的影响[J]. 中国腐蚀与防护学报, 2017, 37(2): 135-141.
[14] 周开河,方云辉,徐孝忠,江炯,郭小平,刘栓,郑文茹,蒲吉斌,王立平. 环境因素对纯Zn在饱和Zn(OH)2溶液中腐蚀行为的影响II—温度和溶解氧浓度[J]. 中国腐蚀与防护学报, 2016, 36(6): 529-534.
[15] 朱敏,袁永锋,刘俊,聂轮,周健. Incoloy825合金在不同温度3.5%NaCl溶液中的腐蚀行为[J]. 中国腐蚀与防护学报, 2016, 36(6): 631-636.