Please wait a minute...
中国腐蚀与防护学报  2017, Vol. 37 Issue (3): 216-220    DOI: 10.11902/1005.4537.2016.043
  本期目录 | 过刊浏览 | 高级检索 |
薄层液膜下空间电场对碳酸环己胺缓蚀性能的影响
朱紫晶1,魏莉莎1,陈振宇1,2(),邱于兵2,郭兴蓬1,2
1 华中科技大学化学与化工学院 材料化学与服役失效湖北省重点实验室 武汉 430074
2 华中科技大学化学与化工学院 能量转换与存储材料化学教育部重点实验室 武汉 430074
Effect of External Electric Field on Inhibition Behavior of Cyclohexylamine Carbonate for Carbon Steel N80 Beneath Adsorbed Thin Electrolyte Layers
Zijing ZHU1,Lisha WEI1,Zhenyu CHEN1,2(),Yubing QIU2,Xingpeng GUO1,2
1 Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
2 Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
下载:  HTML  PDF(2088KB) 
输出:  BibTeX | EndNote (RIS)      
摘要 

研究了薄层液膜下空间电场对碳酸环己胺 (CHC) 缓蚀性能的影响。结果表明,CHC主要抑制碳钢腐蚀反应的阳极过程,对碳钢腐蚀具有显著的缓蚀效果,但施加垂直方向的电场后CHC缓蚀效果显著下降。扫描电镜和X射线光电子能谱分析表明,电场作用导致碳钢表面的腐蚀形貌出现明显变化,CHC在碳钢表面的吸附量显著减少。CHC分子的偶极距 (μ)、最高占据轨道能 (EHOMO)、最低空余轨道能 (ELUMO) 以及能隙 (?E=ELUMO-EHOMO) 在不同的电场条件下的变化规律表明,电场会削弱CHC的反应活性和吸附能力,从而降低其缓蚀效率。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱紫晶
魏莉莎
陈振宇
邱于兵
郭兴蓬
关键词:  气相缓蚀剂  薄层液膜  外电场  量子化学    
Abstract: 

Effect of external electric field on the inhibition efficiency of cyclohexylamine carbonate (CHC) for carbon steel N80 beneath adsorbed thin electrolyte layers (ATEL) was investigated by means of electrochemical measurement, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The results illustrated that CHC mainly suppresses the anodic corrosion reaction and has strong inhibition effect on the carbon steel corrosion. When an electric field vertical to the steel was applied, the inhibition efficiency of CHC decreased greatly and the adsorption of CHC on the carbon steel surface decreased significantly, so that the surface morphology varied quite obviously after corrosion test.The relevant quantum chemical parameters related to the corrosion inhibition efficiency of CHC were calculated by materials studio software. The acquired parameters such as dipole moment (μ), EHOMO, ELUMO and ?E all implied that the reactivity and adsorption ability of CHC were reduced significantly after applying external electric field, which affects the inhibition efficiency of CHC.

Key words:  vapor phase inhibitor    thin electrolyte film    external electric field    quantum chemical
收稿日期:  2016-03-30                出版日期:  2017-07-04      发布日期:  2017-07-04      期的出版日期:  2017-07-04
基金资助: 国家自然科学基金 (51571098)
引用本文:    
朱紫晶,魏莉莎,陈振宇,邱于兵,郭兴蓬. 薄层液膜下空间电场对碳酸环己胺缓蚀性能的影响[J]. 中国腐蚀与防护学报, 2017, 37(3): 216-220.
Zijing ZHU,Lisha WEI,Zhenyu CHEN,Yubing QIU,Xingpeng GUO. Effect of External Electric Field on Inhibition Behavior of Cyclohexylamine Carbonate for Carbon Steel N80 Beneath Adsorbed Thin Electrolyte Layers. Journal of Chinese Society for Corrosion and protection, 2017, 37(3): 216-220.
链接本文:  
http://www.jcscp.org/CN/10.11902/1005.4537.2016.043  或          http://www.jcscp.org/CN/Y2017/V37/I3/216
图1  可施加电场的电化学测试装置图
图2  薄层液膜下N80碳钢在不同条件下的极化曲线
Test condition Ecorr / mV (vs SCE) Icorr / Acm-2 ba / mVdec-1 bc / mVdec-1 η
Blank -724 1.92×10-4 329 -167 ---
1.5×105 V/m -724 1.98×10-4 185 -174 ---
CHC -520 1.37×10-5 294 -133 92.8%
1.5×105 V/m+CHC -605 1.56×10-4 255 -138 18.8%
表1  薄层液膜下N80碳钢在不同条件下的电化学参数
图3  薄层液膜下N80碳钢在不同条件下的Nyquist图
图4  N80碳钢试样在薄层液膜 (ATEL) 下的等效电路图
Test condition Rct / Ωcm2 Qdl / SnΩ-1cm-2 Rf / Ωcm2 Qf / SnΩ-1cm-2 θ
Blank 442 5.73×10-3 15.4 2.3×10-3 ---
1.5×105 V/m 421 1.18×10-3 12.3 3.4×10-3 ---
CHC 5350 4.14×10-3 41.97 2.45×10-3 91.7%
1.5×105 V/m+CHC 521 2.31×10-3 11.5 2.38×10-4 15.2%
表 2  薄层液膜下碳钢在不同条件下电化学阻抗谱拟合参数
图5  薄层液膜下碳钢在不同条件下的SEM像
图6  薄层液膜下碳钢的XPS谱
F / Vm-1 μ / debye EHOMO / eV ELUMO / eV |ELUMO-EHOMO| / eV Negative charge on N
0 0.7922 -4.521 -4.191 0.330 -0.174
0.5×105 0.8136 -5.256 -4.810 0.446 -0.172
1.0×105 0.8233 -5.276 -4.797 0.479 -0.149
1.5×105 0.8272 -5.911 -5.334 0.577 -0.147
表3  不同电场强度下的量子化学参数
[1] Ten F, Hu G.Research progress of vapor phase inhibitors[J]. Corros. Sci. Prot. Technol., 2014, 26: 360)
Ten F, Hu G.Research progress of vapor phase inhibitors[J]. Corros. Sci. Prot. Technol., 2014, 26: 360)
[1] (滕飞, 胡钢. 气相缓蚀剂的研究进展[J]. 腐蚀科学与防护技术, 2014, 26: 360)
(滕飞, 胡钢. 气相缓蚀剂的研究进展[J]. 腐蚀科学与防护技术, 2014, 26: 360)
[2] Ju Y L, Li Y.Research progress of vapor phase inhibitors[J]. J. Chin. Soc. Corros. Prot., 2014, 34: 27
Ju Y L, Li Y.Research progress of vapor phase inhibitors[J]. J. Chin. Soc. Corros. Prot., 2014, 34: 27
[2] (鞠玉琳, 李焰. 气相缓蚀剂的研究进展[J]. 中国腐蚀与防护学报, 2014, 34: 27
(鞠玉琳, 李焰. 气相缓蚀剂的研究进展[J]. 中国腐蚀与防护学报, 2014, 34: 27
[3] Rammelt U, Koehler S, Reinhard G.Efficiency of vapor phase corrosion inhibitors for ferrous metals in neutral and alkaline solutions[J]. Corrosion, 2011, 67: 045001
Rammelt U, Koehler S, Reinhard G.Efficiency of vapor phase corrosion inhibitors for ferrous metals in neutral and alkaline solutions[J]. Corrosion, 2011, 67: 045001
[4] Shi W Y, Cang H, Xia Y, et al.Quantum chemical and molecular dynamics studies on the corrosion inhibition mechanism of five kinds of amino acids[J]. J. Yancheng Inst. Technol.(Nat. Sci. Ed.), 2011, 24(2): 25
Shi W Y, Cang H, Xia Y, et al.Quantum chemical and molecular dynamics studies on the corrosion inhibition mechanism of five kinds of amino acids[J]. J. Yancheng Inst. Technol.(Nat. Sci. Ed.), 2011, 24(2): 25
[4] (石文艳, 仓辉, 夏媛等. 5种氨基酸缓蚀机理的量子化学及分子动力学研究[J]. 盐城工学院学报 (自然科学版), 2011, 24(2): 25)
(石文艳, 仓辉, 夏媛等. 5种氨基酸缓蚀机理的量子化学及分子动力学研究[J]. 盐城工学院学报 (自然科学版), 2011, 24(2): 25)
[5] Yang H Y, Chen J J, Cao C N, et al.Study on corrosion and inhibition mechanism in H2S aqueous solutions-VI. The relationship between molecular structure of imidazoline derivatives and inhibition performance in H2S solutions[J]. J. Chin. Soc. Corros. Prot., 2002, 22: 148
Yang H Y, Chen J J, Cao C N, et al.Study on corrosion and inhibition mechanism in H2S aqueous solutions-VI. The relationship between molecular structure of imidazoline derivatives and inhibition performance in H2S solutions[J]. J. Chin. Soc. Corros. Prot., 2002, 22: 148
[5] (杨怀玉, 陈家坚, 曹楚南等. H2S水溶液中的腐蚀与缓蚀作用机理的研究—VI. H2S溶液中咪唑啉衍生物分子结构与其缓蚀性能的关系[J]. 中国腐蚀与防护学报, 2002, 22: 148
(杨怀玉, 陈家坚, 曹楚南等. H2S水溶液中的腐蚀与缓蚀作用机理的研究—VI. H2S溶液中咪唑啉衍生物分子结构与其缓蚀性能的关系[J]. 中国腐蚀与防护学报, 2002, 22: 148
[6] Taleb M, Didierjean C, Jelsch C, et al.Equilibrium kinetics of lysozyme crystallization under an external electric field[J]. J. Cryst. Growth, 2001, 232: 250
Taleb M, Didierjean C, Jelsch C, et al.Equilibrium kinetics of lysozyme crystallization under an external electric field[J]. J. Cryst. Growth, 2001, 232: 250
[7] Tan Y, Huang X, Xu X, et al.Theoretical studies on the effect of electric field on the structures of metal string complex Ni3(dpa)4Cl2[J]. Chem. J. Chin. Univ., 2012, 33: 1278
Tan Y, Huang X, Xu X, et al.Theoretical studies on the effect of electric field on the structures of metal string complex Ni3(dpa)4Cl2[J]. Chem. J. Chin. Univ., 2012, 33: 1278
[7] (谭莹, 黄晓, 许旋等. 电场对Ni3(dpa)4Cl2金属串配合物结构影响的理论研究[J]. 高等学校化学学报, 2012, 33: 1278)
(谭莹, 黄晓, 许旋等. 电场对Ni3(dpa)4Cl2金属串配合物结构影响的理论研究[J]. 高等学校化学学报, 2012, 33: 1278)
[8] Yue Q, Shao Z Z, Chang S L, et al.Adsorption of gas molecules on monolayer MoS2 and effect of applied electric field[J]. Nanoscale Res. Lett., 2013, 8: 425
Yue Q, Shao Z Z, Chang S L, et al.Adsorption of gas molecules on monolayer MoS2 and effect of applied electric field[J]. Nanoscale Res. Lett., 2013, 8: 425
[9] Li Y D.The influence of electric field on electron density of molecule wires[J]. Chin. J. Low Temp. Phys., 2008, 30: 182
Li Y D.The influence of electric field on electron density of molecule wires[J]. Chin. J. Low Temp. Phys., 2008, 30: 182
[9] (李英德. 电场对分子线电荷密度的影响[J]. 低温物理学报, 2008, 30: 182)
(李英德. 电场对分子线电荷密度的影响[J]. 低温物理学报, 2008, 30: 182)
[10] Grüber C, Buss V.Quantum-mechanically calculated properties for the development of quantitative structure-activity relationships (QSAR'S). pKA-values of phenols and aromatic and aliphatic carboxylic acids[J]. Chemosphere, 1989, 19: 1595
Grüber C, Buss V.Quantum-mechanically calculated properties for the development of quantitative structure-activity relationships (QSAR'S). pKA-values of phenols and aromatic and aliphatic carboxylic acids[J]. Chemosphere, 1989, 19: 1595
[11] Zhang C, Duan H B, Zhao J M.Synergistic inhibition effect of imidazoline derivative and L-cysteine on carbon steel corrosion in a CO2-saturated brine solution[J]. Corros. Sci., 2016, 112: 160
Zhang C, Duan H B, Zhao J M.Synergistic inhibition effect of imidazoline derivative and L-cysteine on carbon steel corrosion in a CO2-saturated brine solution[J]. Corros. Sci., 2016, 112: 160
[12] Hu Q S, Hu J C, Yu J H, et al.Quantitative structure-activity relationship studies on corrosion inhibition of benzimidazole and its derivatives[J]. J. Chin. Soc. Corros. Prot., 2010, 30: 354
Hu Q S, Hu J C, Yu J H, et al.Quantitative structure-activity relationship studies on corrosion inhibition of benzimidazole and its derivatives[J]. J. Chin. Soc. Corros. Prot., 2010, 30: 354
[12] (胡松青, 胡建春, 郁金华等. 苯并咪唑及其衍生物缓蚀性能的定量构效关系研究[J]. 中国腐蚀与防护学报, 2010, 30: 354)
(胡松青, 胡建春, 郁金华等. 苯并咪唑及其衍生物缓蚀性能的定量构效关系研究[J]. 中国腐蚀与防护学报, 2010, 30: 354)
[13] Zhang D Q, Gao L X, Zhou G D.Molecular design and synergistic effect of morpholinium type volatile corrosion inhibitor[J]. J. Chin. Soc. Corros. Prot., 2006, 26: 120
Zhang D Q, Gao L X, Zhou G D.Molecular design and synergistic effect of morpholinium type volatile corrosion inhibitor[J]. J. Chin. Soc. Corros. Prot., 2006, 26: 120
[13] (张大全, 高立新, 周国定. 吗啉衍生物气相缓蚀剂的分子设计和缓蚀协同作用研究[J]. 中国腐蚀与防护学报, 2006, 26: 120)
(张大全, 高立新, 周国定. 吗啉衍生物气相缓蚀剂的分子设计和缓蚀协同作用研究[J]. 中国腐蚀与防护学报, 2006, 26: 120)
[14] Li Y, Guo Y, Cai H, et al.Quantum chemistry study of the structure-activity relationship of corrosion inhibitor[J]. Corros. Prot.,2007, 28: 392
Li Y, Guo Y, Cai H, et al.Quantum chemistry study of the structure-activity relationship of corrosion inhibitor[J]. Corros. Prot.,2007, 28: 392
[14] (李酽, 郭英, 才华等. 缓蚀剂构效关系的量子化学研究[J]. 腐蚀与防护, 2007, 28: 392)
(李酽, 郭英, 才华等. 缓蚀剂构效关系的量子化学研究[J]. 腐蚀与防护, 2007, 28: 392)
[15] Khalil N.Quantum chemical approach of corrosion inhibition[J]. Electrochim. Acta, 2003, 48: 2635
Khalil N.Quantum chemical approach of corrosion inhibition[J]. Electrochim. Acta, 2003, 48: 2635
[1] 苏铁军, 罗运柏, 李克华, 李凡修, 邓仕英, 习伟. 苯并咪唑-N-曼尼希碱对盐酸中N80钢的缓蚀性能[J]. 中国腐蚀与防护学报, 2015, 35(5): 415-422.
[2] 滕飞,井宇阳,胡钢. 铸铁文物复合气相缓蚀剂的复配与研究[J]. 中国腐蚀与防护学报, 2015, 35(3): 265-270.
[3] 谢斌, 朱莎莎, 李玉龙, 赖川, 林肖, 邹立科, 何林芯, 陈能. O,O '-二(2-苯乙基) 二硫代磷酸二乙铵在HCl溶液中对Q235钢的缓蚀性研究[J]. 中国腐蚀与防护学报, 2014, 34(4): 366-374.
[4] 鞠玉琳, 李焰. 气相缓蚀剂的研究进展[J]. 中国腐蚀与防护学报, 2014, 34(1): 27-36.
[5] 吴刚,耿玉凤,贾晓林,孙霜青,胡松青. 异恶唑衍生物缓蚀剂缓蚀性能的理论评价[J]. 中国腐蚀与防护学报, 2012, 32(6): 513-519.
[6] 龚敏,张豫,郑兴文,冯敏,张国虎,杨林. 硫酸介质中含硫氨基酸缓蚀性能研究[J]. 中国腐蚀与防护学报, 2011, 31(5): 341-347.
[7] 曹琨,李伟华,于良民,李云菊,侯保荣. 吡唑啉酮类缓蚀剂在1 mol/L盐酸中吸附缓蚀机理的研究[J]. 中国腐蚀与防护学报, 2010, 30(4): 278-282.
[8] 高国 . 气相缓蚀剂的研究现状及发展趋势[J]. 中国腐蚀与防护学报, 2007, 27(4): 252-256 .
[9] 张大全; 高立新; 周国定 . 吗啉衍生物气相缓蚀剂的分子设计和缓蚀协同作用研究[J]. 中国腐蚀与防护学报, 2006, 26(2): 120-124 .
[10] 何新快 . 气相缓蚀剂的研究现状及展望[J]. 中国腐蚀与防护学报, 2004, 24(4): 245-248 .
[11] 张学元; 余刚; 韩恩厚 . 环己胺类气相缓蚀剂对锌在薄层液膜下的缓蚀机理研究[J]. 中国腐蚀与防护学报, 2003, 23(3): 175-178 .
[12] 张学元; 余刚; 韩恩厚 . 电解质对锌在薄层液膜下腐蚀规律的影响[J]. 中国腐蚀与防护学报, 2003, 23(1): 30-33 .
[13] 王建明; 张昭; 张鉴清 . Zn-Fe-P合金共沉积行为研究[J]. 中国腐蚀与防护学报, 2001, 21(5): 280-285 .
[14] 张学元; 柯克; 杜元龙 . 金属在薄层液膜下电化学腐蚀电池的设计[J]. 中国腐蚀与防护学报, 2001, 21(2): 117-122 .
[15] 颜肖慈; 赵红; 罗明道 . 呋喃及其衍生物对铝缓蚀机理的量子化学研究[J]. 中国腐蚀与防护学报, 1999, 19(6): 372-376 .
[1] Suzhen Luo; Hemin Jing; Yugui Zheng. CAVITATION EROSION BEHAVIOR OF 20SiMnLOW ALLOY STEEL IN DISTILLED WATERAND 3% SODIUM CHLORIDE SOLUTION[J]. J Chin Soc Corr Pro, 2003, 23(4): 206 -210 .
[2] Lin Yuzhen (Beijing Institute of Chemical Technology;Beijing;China). CREVICE CORROSION OF STAINLESSSTEEL IN NaCl SOLUTION-CHANGES OF ANOLYTE AND STATE OF Cr(Ⅲ) EXISTING WITHIN CREVICE[J]. J Chin Soc Corr Pro, 1985, 5(1): 9 -17 .
[3] Hongmei Li; Wu Yang; Xun Cai; Zhanpeng Lv. Fractography of the Stress Corrosion Cracking Specimens of Type 304 Stainless Steel in High Temperature Water Containing Boric Acid and Lithium Ion[J]. J Chin Soc Corr Pro, 2004, 24(1): 16 -19 .
[4] WANG Yongxia, XIANG Hongliang, YANG Caiping, LIU Dong. Corrosion Resistance of Copper-bearing Duplex Stainless Steel in Culture Medium without and with Bacteria[J]. Journal of Chinese Society for Corrosion and protection, 2014, 34(6): 558 -565 .
[5] Chen Jiajian Cao Jiashou (Institute of Corrosion and Proteetion of Metals; Academia Sinica). THE EFFECT OF A NON-IONIC SURFACTANT ON THE CORROSION BEHAVIOUR OF CARBON STEEL AND THE EFFECT OF INHIBITORS IN ACID SOLUTIONS[J]. J Chin Soc Corr Pro, 1985, 5(3): 214 -221 .
[6] CHANG E; YAN Yonggui; LI Qingfen; MA Li. EFFECTS OF CATHODIC POLARIZATION ON THE HYDROGEN EMBRITTLEMENT SENSITIVITY OF 921A STEEL IN SEA WATER[J]. J Chin Soc Corr Pro, 2010, 30(1): 83 -88 .
[7] ZHAO Guoqiang, WEI Yinghua, LI Jing. Current Efficiency and Corrosion Mechanism of Al-Zn-In Sacrificial Anode at Different Current Densities[J]. Journal of Chinese Society for Corrosion and protection, 2015, 35(1): 69 -74 .
[8] LI Qiang, TANG Xiao, LI Yan. Progress in Research Methods for Erosion-corrosion[J]. Journal of Chinese Society for Corrosion and protection, 2014, 34(5): 399 -409 .
[9] YU Shurong,HE Yanni,LI Shuxin,WANG Lu. Effect of Grain Size on Susceptibility to Intergranular Corrosion for Austenitic Stainless Steel[J]. Journal of Chinese Society for Corrosion and protection, 2013, 33(1): 70 -74 .
[10] Guoxi Li; Yiran Zheng; Xia Chang. DETERMINATION OF TECHNICAL PARAMETERS OF DIFFUSION TREATMENT ON HOT DIP ALUMINIZING STEEL[J]. J Chin Soc Corr Pro, 2002, 22(2): 121 -123 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed