基于物理信息神经网络的油气管道内腐蚀预测方法
|
周涛涛, 刘迎正, 郑文培, 姜恒良, 刘海鹏, 夏刚
|
Pipeline Corrosion Prediction Method Based on Physics-informed Neural Networks
|
ZHOU Taotao, LIU Yingzheng, ZHENG Wenpei, JIANG Hengliang, LIU Haipeng, XIA Gang
|
|
表1 管道内腐蚀预测模型的相关变量
|
Table 1 Variables in prediction models of corrosion of pipelines
|
|
Labels | Variable | Variable name | Unit | Range | Average |
---|
X1 | T | Temperature | ℃ | 41.7-69.4 | 58.5 | X2 | P | System pressure | Pa | 1.52 × 106-3.23 × 106 | 2.28 × 106 | X3 | | CO2 partial pressure | Pa | 2.9 × 104-3.8 × 104 | 3.3 × 104 | X4 | pH | pH | - | 4.2-6.2 | 5.8 | X5 | Vf | Fluid flow rate | m·s-1 | 0.37-0.69 | 0.53 | X6 | Cl- | Cl- concentration | mg·L-1 | 3420-8280 | 6227 | X7 | CO2 eq | CO2 concentration | mg·L-1 | 15.8-27.4 | 22.7 | X8 | HCO | HCO concentration | mg·L-1 | 107-208 | 150 | X9 | WC | Water content | % | 52.5-63.9 | 58.6 | Y | Vcorr | Internal corrosion rate | mm·a-1 | 2.289-3.105 | 2.681 |
|
|
|