基于物理信息神经网络的油气管道内腐蚀预测方法
周涛涛, 刘迎正, 郑文培, 姜恒良, 刘海鹏, 夏刚

Pipeline Corrosion Prediction Method Based on Physics-informed Neural Networks
ZHOU Taotao, LIU Yingzheng, ZHENG Wenpei, JIANG Hengliang, LIU Haipeng, XIA Gang
表1 管道内腐蚀预测模型的相关变量
Table 1 Variables in prediction models of corrosion of pipelines
LabelsVariableVariable nameUnitRangeAverage
X1TTemperature41.7-69.458.5
X2PSystem pressurePa1.52 × 106-3.23 × 1062.28 × 106
X3pCO2CO2 partial pressurePa2.9 × 104-3.8 × 1043.3 × 104
X4pHpH-4.2-6.25.8
X5VfFluid flow ratem·s-10.37-0.690.53
X6Cl-Cl- concentrationmg·L-13420-82806227
X7CO2 eqCO2 concentrationmg·L-115.8-27.422.7
X8HCO3-HCO3- concentrationmg·L-1107-208150
X9WCWater content%52.5-63.958.6
YVcorrInternal corrosion ratemm·a-12.289-3.1052.681