基于物理信息神经网络的油气管道内腐蚀预测方法
周涛涛, 刘迎正, 郑文培, 姜恒良, 刘海鹏, 夏刚

Pipeline Corrosion Prediction Method Based on Physics-informed Neural Networks
ZHOU Taotao, LIU Yingzheng, ZHENG Wenpei, JIANG Hengliang, LIU Haipeng, XIA Gang
图3 不同模型预测的管道在不同CO2分压下的腐蚀速率随温度的变化
Fig.3 Corrosion rate vs. temperature curves obtained for pipelines by SVM (a), XGBoost (b), ANN (c) and PINN (d) models under different CO2 partial presses