我国不同地区钢材大气腐蚀预测算法评估与筛选
|
沈坚, 吴柯娴, 何晓宇, 方兴龙
|
Evaluation and Screening of Atmospheric Corrosion Prediction Algorithms of Steels in Different Regions of China
|
SHEN Jian, WU Kexian, HE Xiaoyu, FANG Xinglong
|
|
表2 不同机器学习模型预测结果的误差指标
|
Table 2 Error metrics of prediction outcomes for different machine learning models
|
|
Atmospheric station | Error indicator | Sample set | SVM | RF | RBFNN | BPNN | LSTM | CNN |
---|
WN | R² | Training set | 0.81 | 0.91 | 0.70 | 0.95 | 0.91 | 0.33 | | Test set | 0.74 | 0.65 | 0.48 | 0.85 | 0.87 | 0.38 | | RMSE | Training set | 152 | 105 | 178 | 68 | 100 | 287 | | Test set | 100 | 109 | 206 | 137 | 92 | 163 | | MAE | Training set | 45 | 52 | 103 | 43 | 61 | 131 | | Test set | 59 | 69 | 140 | 75 | 58 | 94 | | MAPE | Training set | 265% | 252% | 521% | 264% | 254% | 1511% | | Test set | 263% | 272% | 2220% | 127% | 1454% | 304% | Others | R² | Training set | 0.90 | 0.94 | 0.80 | 0.85 | 0.85 | 0.49 | | Test set | 0.86 | 0.84 | 0.76 | 0.77 | 0.82 | 0.65 | | RMSE | Training set | 27 | 21 | 36 | 33 | 31 | 59 | | Test set | 21 | 23 | 33 | 29 | 31 | 38 | | MAE | Training set | 10 | 7 | 20 | 19 | 15 | 28 | | Test set | 15 | 13 | 24 | 20 | 18 | 23 | | MAPE | Training set | 130% | 29% | 202% | 215% | 60% | 569% | | Test set | 141% | 57% | 267% | 156% | 133% | 237% |
|
|
|