中国腐蚀与防护学报, 2024, 44(4): 823-834 DOI: 10.11902/1005.4537.2023.294

综合评述

聚氨酯涂层的疏水改性研究进展

王汀, 高坤, 钟赛男, 张昭,

浙江大学化学系 杭州 310027

Research Progress on Hydrophobic Modification of Polyurethane Coatings

WANG Ting, GAO Kun, ZHONG Sainan, ZHANG Zhao,

Department of Chemistry, Zhejiang University, Hangzhou 310027, China

通讯作者: 张昭,E-mail:eaglezzy@zju.edu.cm,研究方向为防腐抗污涂料和电化学技术

收稿日期: 2023-09-15   修回日期: 2023-11-06  

基金资助: 国家自然科学基金.  51771173

Corresponding authors: ZHANG Zhao, E-mail:eaglezzy@zju.edu.cm

Received: 2023-09-15   Revised: 2023-11-06  

Fund supported: National Natural Science Foundation of China.  51771173

作者简介 About authors

王汀,女,1998年生,硕士生

摘要

聚合物涂层具有成本低廉、易于制备、使用方便、种类丰富等优点,被广泛用于运输和基础设施等领域金属材料表面的防腐防污。其中,聚氨酯(PU)是一种具有良好机械性能、耐磨性、耐热性和耐腐蚀性等优异性能的聚合物材料。然而传统PU涂层的耐水性不佳,严重影响其在潮湿环境下的稳定性和使用寿命,因此对PU涂层进行疏水改性以增强其耐水性成为了具有广泛应用前景的研究方向。本文总结了用于PU涂层疏水改性的方法和研究进展,并对其进一步的应用前景进行了展望。

关键词: 聚氨酯 ; 疏水 ; 涂层 ; 防腐蚀

Abstract

Polymer coatings are of particular importance in corrosion and fouling protection of metallic materials in transport and infrastructure industries due to their advantages of low cost, easy preparation, convenient operation and rich variety. Among various polymer coatings, polyurethane (PU) coatings are widely used as surface protection materials for metallic facility because of their excellent mechanical property and strong resistance to abrasion, heat and corrosion. However, the presence of hydrophilic components in the formulation of PU coatings leads to a decrease in hydrophobicity, which seriously restricts their industrial application in humid environment. Therefore, many efforts have been made to develop new modification strategies for PU coatings in order to obtain stable hydrophobic coatings. The review aims to provide insight into the recent advances in hydrophobic PU coatings, and methods that have used to modify and design hydrophobic PU coatings are summarized. Also, the challenges and outlook of hydrophobic PU coatings are discussed.

Keywords: polyurethane ; hydrophobicity ; coating ; corrosion protection

PDF (4851KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

王汀, 高坤, 钟赛男, 张昭. 聚氨酯涂层的疏水改性研究进展. 中国腐蚀与防护学报[J], 2024, 44(4): 823-834 DOI:10.11902/1005.4537.2023.294

WANG Ting, GAO Kun, ZHONG Sainan, ZHANG Zhao. Research Progress on Hydrophobic Modification of Polyurethane Coatings. Journal of Chinese Society for Corrosion and Protection[J], 2024, 44(4): 823-834 DOI:10.11902/1005.4537.2023.294

金属腐蚀一直是困扰人类的一大难题。一方面,随着工业生产和基础设施建设的迅速发展,各种金属材料越来越大量和广泛地应用到生产设施和公共生活领域,相关设施的安全运行和维护备受重视;另一方面,金属的腐蚀造成了大量的资源浪费和环境污染,不符合环境保护和可持续发展的理念[1-3]。因此,如何提高金属材料在各种环境下的使用寿命成为备受关注的研究课题。

目前已开发出如阴极保护[4]、缓蚀剂[5,6]、金属基材表面改性(包括涂镀层)[7]等多种金属防腐措施。其中,涂层是目前保护金属材料最通用的技术之一,通过直接将需要保护的材料与复杂的外部环境隔开,可以实现包括抗腐蚀在内的各种物理和化学保护[8,9]。各种材料如牺牲阳极(金属)[10]、陶瓷/金属氧化物[11,12]、聚合物以及复合材料等已被开发并用作保护性防水防腐涂层,其中聚合物涂层具有成本低廉、易于制备、使用方便、种类丰富等优点,已被广泛用于船舶、家具、石油化工等领域金属材料表面的防腐防污[13]。聚氨酯(PU)是聚合物保护涂层的一大分支,具有良好的力学性能、耐热性、耐腐蚀性[14],然而PU分子链上的亲水性基团的存在降低了PU涂层的耐水性,极性水分子、氧分子及各种离子等潜在腐蚀性物质的迁移渗透严重影响了PU涂层在潮湿环境下的稳定性和使用寿命[15];特别是水性聚氨酯(WPU)在合成过程中引入了亲水单体,相比溶剂型PU面临着更加严峻的耐水性问题。因此,对PU和WPU涂层进行物理或化学改性,以通过增强其疏水性来提高其耐水性,可以拓展PU涂层在各种复杂环境下的应用空间,提高涂层耐用性和对基材的保护能力,成为具有广泛应用前景的研究方向。

本文分类介绍了对聚氨酯(PU和WPU)涂层材料进行疏水改性的方法,包括化学改性如氟改性、硅改性,物理改性如纳米填料改性等,并对疏水型聚氨酯涂层在复杂环境下的研究方向和应用前景进行了展望。

1 氟改性

将强疏水含氟基团引入PU主链合成含氟聚氨酯(FPU)或含氟水性聚氨酯(FWPU),可以显著改善涂层表面疏水性,进而提高其耐水性。由于氟电负性强、结构中C-F键能高(486 kJ/mol),在乳液成膜时低表面能的含氟段链容易迁移并聚集在膜表面,从而提高其耐腐蚀性、疏水性和耐水性,微相分离的结构和硬段链含量的增加也可以增强涂层的机械性能。FPU结合了聚氨酯和含氟化合物的优点,从而成为聚氨酯改性的热门研究方向之一,但FPU也存在含氟单体成本较高、涂层稳定性有待提高、涂层破损释放含氟化合物造成潜在的健康和环保风险等问题,有待进一步研究改进[16,17]

1.1 含氟扩链剂改性

使用含氟二元醇作为扩链剂直接与聚氨酯反应,在PU主链中引入含长氟化侧链的硬段链,是目前最常见、应用最广的氟改性PU的方法[18,19]

Wu等[20]通过硫醇-烯点击反应,以3-巯基-1, 2-丙二醇(TPG)和1, 1, 2, 2-四氢全氟癸基甲基丙烯酸酯(FDMA)为原料,合成了新型的二羟基封端氟化扩链剂,并将其用于合成具有高疏水性和防污性能的WPU树脂,改性后的含氟涂层相比未改性的WPU疏水性显著增强;含氟量8%(质量分数)时,表面水接触角(WCA)从WPU的(67 ± 2)°增加到(104 ± 4)°,并且对各种液体如水、橙汁、墨水和牛奶都具备优异的防污性能。Xu等[21]在不同反应条件下以氰尿氯、八氟戊醇和二乙醇胺为原料反应制备了一种新型的三嗪基含氟二醇,作为合成含氟WPU的扩链剂,结合使用内部交联剂和含氟封端剂,改善了WPU涂层的疏水性和机械性能;当含氟扩链剂质量分数为8%时,FWPU涂层的WCA达到125.8°,X射线光电子能谱(XPS)和原子力显微镜(AFM)的结果表明疏水性的增强是因为含氟段链迁移到涂层表面并富集。Han等[22]使用六氟-2, 3-双(三氟甲基)-2, 3-丁二醇作为含氟扩链剂,并以胍类抗菌聚合物聚六亚甲基胍和聚四氢呋喃(PTMG)共同作为软链段,合成了具备抗菌抗污性能的PFPU涂层;将改性的PFPU喷涂于未改性的非离子型WPU上,其表面十六烷基和WCA都增大,说明涂层的疏水性和抗污性均有改善。Zhang等[23]用N-乙基乙醇胺和2-(2-(3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 8-十三氟辛基)氧基)乙基环氧乙烷(FPO)合成了一种新型氟化扩链剂,同异佛尔酮二异氰酸酯和聚四氢呋喃反应得到疏水涂层,15%氟含量的PU的WCA可达到171.0°,同花生油的接触角也可达到156.0°,且具备优异的耐溶剂性、耐化学腐蚀性和耐磨性。

1.2 含氟多元醇软段链改性

对软段链进行氟改性的方法主要有两种,一种是合成带氟化侧链的大分子多元醇[24],另一种是使用C-F取代C-H作为侧基的大分子多元醇作为软段链。前者含氟基团更容易在成膜过程中迁移到表面,因此改性涂层具备更好的表面疏水性能。后者虽然因刚性主链间的强相互作用,含氟大分子链迁移困难降低了涂层的疏水性能,但由于不含容易脱落的长侧链、F原子直接与主链C原子键合,涂层通常具有更好的耐热性、耐腐蚀性和抗氧化性[25];但由于制造工艺的难度,可选择的氟化大分子二醇的种类较少[26]

Mohanty等[27]用全氟壬酸与环氧化蓖麻油(CO)反应得到含长氟碳侧链的多元醇FCO,并与IPDI反应制备了疏水改性的PU涂层(FCO-PU),相比未改性涂层(WCA为84.4°),FCO-PU涂层的WCA增加到119.1°,表现出优异的疏水性,且抗腐蚀性能显著增强。Li等[28]通过四氢呋喃和含氟环氧化合物[29]的活性/可控阳离子开环聚合反应制备了含氟侧链的氟化聚醚二醇,作为软段链和六亚甲基二异氰酸酯三聚体(MDI)反应得到侧链中含氟的氟化聚氨酯FPU,其WCA由未经氟化改性PU的78.3°增加到104.1°。Li等[30]使用自行合成的羟基封端的液态氟弹性体(LFH)[31]作为软段链,与MDI、PTMG反应合成了具有抗气蚀性的疏水PU,LFH主链和侧链上的大多数氢原子都被氟原子取代,分子量低且流动性好;LFH质量分数为20%的改性FPU涂层经去离子水和人造海水浸泡超过150 d后,WCA仍保持大于100°。

1.3 含氟丙烯酸酯改性

除了直接引入含氟软、硬段链的方法外,还可以结合丙烯酸酯改性,将含氟丙烯酸酯同PU大分子进行自由基聚合反应,合成PU/丙烯酸树脂(PAA)的复合树脂涂料[32]。相较于直接引入法,含氟丙烯酸改性PU树脂可兼具聚氨酯和丙烯酸树脂的优点,涂料的贮存稳定性以及涂层的耐热性、抗氧化性等均有改善[33]

Wu等[34]以甲基丙烯酸十二氟庚酯和MDI、PTMG为原料,通过丙烯酸酯单体的自由基聚合以及MDI和PTMG预聚反应得到了NCO封端的PU预聚物和FPMA低聚物的混合物,经后续扩链乳化等步骤后合成了FPMA/WPU杂化乳液,然后与PDMS疏水改性的纳米SiO2共混。结果表明,低表面能FPMA和WPU之间的不相容性显著增强了WPU软段和硬段的相分离,涂层表面粗糙度的增加和表面氟元素的富集增强了涂层的疏水性;同时,FPMA同活性SiO2之间形成的交联结构增强了涂层的力学性能。Yu等[35]先将十三氟辛基甲基丙烯酸酯和丙烯酸羟基酯进行共聚反应,并将共聚物与经KH570进行表面改性的纳米SiO2共混,合成了纳米SiO2掺杂的氟化羟基聚丙烯酸酯;然后在室温下用异氰酸酯预聚物(N3390)进一步固化,得到了具备交联结构的纳米SiO2/氟化聚丙烯酸酯聚氨酯复合涂层(图1);其氟化链段在涂层表面的富集和表面粗糙度的增加赋予了复合涂层良好的疏水性,可以实现116°的WCA。Wang等[36]首先合成了乙烯基封端的WPU预聚物,然后与甲基丙烯酸十二氟庚酯以及其他丙烯酸酯单体反应聚合,得到一种交联氟化丙烯酸酯改性的WPU复合乳液;固化过程中长氟侧链迁移形成的外部疏水表面和内部双交联体系赋予了该复合材料优异的疏水性、耐水性和抗腐蚀性,WCA可达到102.5°。

图1

图1   SiO2-FPEAU疏水涂层制备示意图[35]

Fig.1   Schematic illustration of the preparation of SiO2-FPEAU hydrophobic coatings[35]


1.4 含氟封端剂改性

使用有机氟作为链封端剂也是氟改性PU的方法之一[37,38]。相较于在主链中分散引入含氟单体时的氟化部分固定在主链中间的情况,在链端引入含氟基团可以降低PU主链的刚性和强相互作用,提高F迁移效率和PU的表面性能[20]

Jin等[39]使用1H, 1H, 2H, 2H, 3 H, 3H-十三氟-1-壬醇作为封端剂,合成了一种末端含氟、PDMS作为软段链改性的新型水性氟硅聚氨酯,改性涂层的WCA达到128.6°且具有良好的机械性能和防水性。Wen等[40]分别使用六氟异丙醇、2, 2, 3, 3, 4, 4, 5, 5-八氟戊醇、3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 8-十三氟-1-辛醇作为含氟封端剂,对六亚甲基二异氰酸酯三聚体的NCO端基进行部分封端引入C-F链,在此基础上合成了一系列含有柔性间隔基和不同长度含氟侧链的FWPU,柔性间隔基的存在降低了主链刚性和强相互作用对含氟单元迁移和取向的影响,含长氟烃链的PU膜的WCA最高可达到121.8°。但封端剂引入的氟含量有限,需要结合硅改性、交联改性等手段实现更高程度的表面疏水性,且仍存在迁移至涂层表面的含氟段链易脱落的问题。

2 硅改性

有机硅化合物的分子链中同时含有硅氧硅键(-Si-O-Si-)和有机基团,使其兼具无机和有机材料的优点。一方面,其结构中的Si-O键键能高(443 kJ/mol)、表面能低,改性涂层多具有优异的氧化稳定性和耐水性;另一方面,分子链上的有机基团又改善了其与高分子聚合物的相容性。硅改性涂层的加工性能良好,便于工业化生产和应用。有机硅改性聚氨酯种类丰富,包括硅烷偶联剂改性、聚硅氧烷改性和多面体低聚倍半硅氧烷改性等类型。

2.1 硅烷偶联剂改性

硅烷偶联剂的结构由有机和无机两部分组成,具有热稳定性好、低毒性和环境惰性等优点,可作为交联剂、偶联剂和附着力促进剂等应用于涂层领域,改善涂层的力学性能、热稳定性或防腐蚀性等[41]。在硅氧烷改性的PU涂层中,不相容的低极性含硅软段链向涂层表面迁移富集,降低了其表面张力,从而实现疏水效果。

Hussain等[42]通过氨基丙基三甲氧基硅烷和炔丙基溴反应合成了二炔基封端的硅氧烷单体,并进一步通过与一系列叠氮化物封端的聚氨酯单体进行环加成反应,制备了硅氧烷改性的具备高度交联结构的新型聚氨酯涂层(Si-PUT)。该涂层具有优异的表面疏水性和防腐蚀性能,接枝的低表面能硅氧烷基团在涂层表面富集,不同类型异氰酸酯结构的Si-PUT均实现了大于110°的WCA(图2),其出色的疏水性表明了它们应用于疏水防腐涂层的可行性。Zhao等[43]使用N-(2-氨基乙基)-3-氨基丙基三甲氧基硅烷(AATS)和3-氨基丙基三乙氧基硅烷(ATS)对WPU预聚体进行改性,合成了一种防水的硅氧烷改性的超支化水性聚氨酯(Si-HBPU),然后在此基底上均匀喷涂氟改性的纳米SiO2(F-SiO2)制备超疏水涂层。Si-HBPU具有许多极性基团,如Si-OH,可以与基底和F-SiO2纳米颗粒的表面羟基形成氢键,从而形成稳定的Si-O-Si交联网络,因此制备的超疏水涂层的WCA可达到163°,且耐磨性优异,在140次砂纸磨损循环后仍保留超疏水性。

图2

图2   载玻片上Si-PUT薄膜的水接触角和可见光透射率及光学透明度示意图[45]

Fig.2   Panel depicting representative images of the shapes of water droplets on Si-PUT films (a) and visible light transmittance and showcasing of the optical transparency of Si-PUTs films on glass slides (b)[45]


2.2 聚硅氧烷改性

聚硅氧烷的主链由硅氧键(-Si-O-Si-)组成,侧链由其他元素与Si原子相连,具有良好的热稳定性、耐水性、低温柔韧性、低毒性和优异的生物相容性。将聚硅氧烷结构引入PU主链中可以提高PU涂层的热稳定性和疏水性,疏水性的增加主要是因为非极性的聚硅氧烷主链表面能较低,含Si段链迁移并在涂层表面富集;与硅烷偶联剂改性相比,含Si段链分布在聚合物主链,硅氧键含量更高,不易磨损且耐久性更好。目前研究最多的是PDMS及其衍生物对PU的改性。

Ma等[44]以多芳基多亚甲基异氰酸酯为多异氰酸酯单体、含羟基的天然植物纤维为多元醇原料,使用羟基封端的聚硅氧烷作为软段成分进行PU的硅改性,增强了合成的生物基聚氨酯的疏水性。未经聚硅氧烷改性的涂层WCA约为88.6°,而单聚硅氧烷改性的涂层和聚硅氧烷/聚醚复合改性的涂层WCA可分别达到108.8°和105.5°,说明来自硅氧烷的硅氧链显著改善了涂层的疏水性。

除了将PDMS引入PU主链外,也可以将PDMS接枝在聚合物主链上进行侧链改性,侧链改性的PU具有结构可控、合成简单、侧链种类丰富等优点,侧链末端的还可以根据应用要求使用不同的功能化基团[45]。Ren等[46]分别合成了含聚醚结构亲水侧链和含聚硅氧烷结构疏水侧链的二胺型扩链剂,一同用于制备梳状两亲性WPU,其结构中亲水的扩链剂增强了聚合物乳液的稳定性,有机硅又赋予薄膜优异的疏水性和耐水性。与未经改性的WPU薄膜相比,改性薄膜的吸水率降低了5.3%,WCA由87.3°增加到98.8°,增加了12.6°,证明改性薄膜具有更好的耐水性和疏水性。

然而非极性聚硅氧烷和PU分子链中的极性硬段链相容性相对较差,最终导致PU/聚硅氧烷材料的机械强度降低,可以考虑通过提高涂层交联度或结合其他改性方法改善其耐水性和机械强度。如Cai等[47]将研磨成粉末状的黑磷纳米片(BP)与二甲基二氯硅烷和四甲氧基硅烷混合,通过原位合成将交联的PDMS接枝到BP纳米片上,增强了BP纳米片在潮湿环境下的稳定性。使用硅改性的纳米填料对热塑性聚氨酯(TPU)进行改性可以提升材料的耐水性和阻燃性,对比纯TPU,加入未改性BP纳米片的TPU/BP表面WCA从78°降低到67°,而添加硅改性的PDMS-BP 纳米片可使表面WCA进一步增加至92°。

2.3 多面体低聚倍半硅氧烷改性

多面体低聚倍半硅氧烷(POSS)是一种多环状有机单体,由硅骨架和嵌键的氧原子组成,具有独特的纳米尺寸的三维笼状结构;POSS的化学性质与硅氧烷类似,但其结构中的顶部Si原子可以键合如羟基、异氰基等反应基团,使得POSS的衍生物具有丰富的功能性,可广泛应用于药物载体、金属防腐、催化剂等领域[48,49]

过去许多研究报道了POSS作为纳米填料在聚合物涂层功能化改性中的应用[50,51],在疏水改性的领域也备受展望,但除了直接进行纳米填料掺杂,含有多羟基取代基的POSS也可用作PU合成原料中的扩链剂、原位键合到聚合物主链中。Lacruz等[52]使用含反式环己二醇异丁基和7个大位阻高疏水异丁基基团的POSS(POSS-OH)作为改性剂,合成了一系列无氟水性聚氨酯-尿素分散体(WPUD)。相比使用传统二醇扩链剂的涂层,其在光滑载玻片上的WCA显著增加,添加摩尔分数为7.67%时WCA由84°增加到了97°,在粗糙的织物表面疏水性能进一步增强。Zhao等[53]合成了含有两个羟基和两个三乙氧基的新型POSS(m-POSS)用于PU合成中的扩链剂原料,随着m-POSS含量的增加,薄膜表面的WCA从84.0°增加到121°,除了POSS纳米结构骨架本身的疏水性外,取代基间形成的硅氧烷结构的交联网络同样增强了表面的疏水性和拉伸性能(图3)。

图3

图3   不同含量m-POSS对水性聚氨酯薄膜表面WCA和润湿性影响的示意图[53]

Fig.3   Water drops on the hybrid films and schematic representations of the effect of m-POSS content on the water wettability of the hybrid films[53]


但相比其他硅改性手段,POSS用于疏水改性的报道仍较少,相关应用仍存在以下问题:一是POSS的合成过程复杂,生产成本较高,限制了工业应用;二是与聚合物复合使用时往往所需添加量较大,存在与基体的相容性问题。通过POSS的化学结构设计或结合其他改性手段降低POSS用量是未来的研究方向之一。Wang等[54]以含3个-OH和7个苯基的POSS为扩链剂、含甲基丙烯酸基团取代基的POSS(8MA-POSS)为改性剂,与IPDI、PTMG反应,结合含氟甲基丙烯酸(G04)改性合成了可紫外光固化的疏水改性PUA涂层。该涂层具有良好的疏水防腐性能,氟改性显著增强了较低POSS改性剂含量下涂层的疏水性能,WCA可以达到109°左右,且盐雾试验和浸泡试验结果表明其相比未改性涂层具备防水和防盐雾的性能,涂层更耐久。

3 纳米填料改性

除了引入含F、Si成分的低表面能成分外,还可以通过增加涂层表面粗糙度的方法增加涂层疏水性。根据Wenzel模型,假设液体与固体表面完全接触,固体实际表面积与表观面积之比即粗糙度的增加,可以放大固体表面固有的润湿性;表面越粗糙,固有亲水表面的亲水性就越强,相反固有疏水表面的疏水性越强;这意味着除了物体材料性质之外,还可以通过改变表面粗糙度来改变表面的亲水或疏水性[55]

加入纳米填料可以增加涂层表面粗糙度,诸如SiO2、碳纳米材料、纳米金属氧化物等不同种类和形貌的纳米填料已被用于制备疏水PU涂层。通过对纳米填料表面进行化学改性、设计多组分复合纳米材料等合成策略,还可以进一步丰富涂层功能性、改善涂层性能。

3.1 SiO2

纳米SiO2是涂料最常用的纳米填料之一,尽管纳米SiO2因为其表面的-OH基团表现为亲水性,但在聚合物成膜过程中氢键产生的交联密度增加,更高的交联密度限制了水分子的迁移渗透,从而提高了涂层的表面疏水性和耐水性,因此常被用于聚合物涂层的疏水改性[56,57]

Hu等[58]使用KH560和含氟硅烷偶联剂(十七氟-1, 1, 2, 2-十四烷基)三甲氧基硅烷(FAS)对纳米SiO2进行表面改性,在纳米SiO2表面接枝了疏水的长碳氢链和低表面能疏水C-F链,再同IPDI、聚碳酸酯二醇共聚反应后超声分散制备PU疏水涂层;相比未改性PU涂层,所得的PU疏水涂层表面的粗糙度增大,WCA从90°增加到123.2°,表现出优异的疏水性能。Wu等[59]以环氧树脂开环得到的多元醇和羟丙基封端的聚硅氧烷(HTPMDS)为软段原料,和甲苯二异氰酸酯(TDI)反应合成了水性环氧树脂(EP)/PU复合树脂,并掺入经三甲基乙氧基硅烷(TMES)表面修饰的纳米SiO2进一步改善其疏水性;根据TEM和WCA测试结果,未添加表面改性SiO2的WPU薄膜表面相当光滑,WCA约为95°;随着改性纳米SiO2含量的增加,薄膜的表面粗糙度也逐渐增大,15%含量时WCA达到154°,达到超疏水表面的要求(图4)。Guo等[61]将气相SiO2分散到乙酸乙酯溶剂中,然后喷涂在半固化的羟基硅油改性的PU基膜上,进一步固化后得到SiO2/SiPU超疏水涂层;纳米颗粒的加入构造了微/纳米结构粗糙表面,在粗糙空隙中形成空气“气垫”,从而增强了涂层的疏水性;复合涂层对各种液体的接触角均大于150°,滚动角均小于10°,表明制备的涂层具有优异的超疏水性能,此外涂层还具有良好的耐磨、耐腐蚀、自清洁性能。秦凤鸣等[61]向有机硅改性的聚氨酯溶液中加入含氟硅烷偶联剂改性的纳米SiO2颗粒填料制备超疏水涂层,结果表明未加填料的聚氨酯涂层表面光滑,WCA仅为97.6°,随着改性填料的加入表面粗糙度逐渐增大,当填料加入量为60%时,WCA达到153.3°。

图4

图4   不同含量TMES/SiO2掺杂的EP/PU薄膜表面形貌和水接触角示意图[59]

Fig.4   Surface morphologies of nanocomposite films with 0% (a), 5% (b), 10% (c), 15% (d) and 20% (e) TMES modified nano SiO2[59]


纳米颗粒由于其高表面积和表面能,总是倾向于团聚,严重影响其分散性及其与PU涂层的相容性[62]。改善方案之一是在其表面接枝疏水基团进行改性,以避免纳米颗粒的团聚[63]。Jiang等[64]在纳米SiO2表面接枝了硅烷偶联剂KH550,添加到合成的聚硅氧烷/聚丙烯酸酯乳液中,并将杂化乳液用于WPU涂料的制备。聚硅氧烷预聚物的加入使薄膜的接触角从76.3°增加到96.7°,而改性SiO2纳米颗粒的加入增强了杂化乳液膜的机械性能和防水性能,SEM结果表明经过KH550改性后,在纳米颗粒表面引入了长烷基链和-NH2,有效减少了纳米颗粒的团聚并提高了无机填料与有机薄膜的相容性。

3.2 碳纳米材料

碳基纳米材料是一种常见的纳米填料,因其独特的物理和化学性质而受到广泛关注。碳基材料种类丰富,如活性炭、富勒烯、碳纳米纤维、碳纳米管[65]、微孔和介孔碳材料、石墨烯、氮化碳等[65,66],由于其优异的电学、热学、机械和光学性能,被广泛应用于电子设备、传感器、光伏和航空航天等先进领域[67]

3.2.1 石墨烯和氧化石墨烯

石墨烯(GN)是一种由碳原子以六角形蜂巢晶格排列形成的二维层状材料,具有优异的机械性能、化学惰性和热稳定性,可用作各种涂料的纳米填料添加剂。目前已有许多研究讨论通过表面修饰来控制GN材料的润湿性,常用物理方法如静电纺丝等方法构建粗糙结构微纳米表面,以及化学方法如用低表面能材料修饰GN表面来增强其疏水性,同时避免纳米片间因强范德华力而产生聚集[68]。He等[69]通过带有芘环、亲水基团和偶氮苯结构的Py-AZO与GN之间的π-π相互作用,将偶氮苯基团以非共价键形式接枝在GN表面制备了GN复合材料,加入改性填料后复合PU涂层的抗冲击性、硬度和疏水性能显着提高,未改性涂层、GN改性涂层和GN-Py-AZO改性涂层的WCA最大可分别达到72.7°、81.3°和83.7°,且疏水性变化的趋势并不完全匹配表面粗糙度的变化,说明GN本身的疏水性也起到一定作用。

然而GN的高导电性和相应的腐蚀活性限制了其在涂层特别是金属表面涂层中的应用。通过将GN转化为氧化石墨烯(GO)可以避免类似缺陷,GO表面含有的羟基、羧基和环氧化物官能团等活性基团虽然增强了材料的亲水性,但通过表面疏水以及其他功能化改性可被有效改善[70,71]。Shu等[72]通过溶胶-凝胶法,将球形SiO2共价接枝到GO纳米片表面用于蓖麻油基PU的改性,结果表明未改性的PU薄膜的WCA为92.52°;随着GO-SiO2纳米填料添加量的增加,PU薄膜的水接触角逐渐增大,改性填料含量为0.3%时制备的薄膜WCA达到100.20°,说明GO表面覆盖的低表面能Si改善了薄膜疏水性。Zhang等[73]将聚醚胺(PA)通过简单的共价反应接枝到GO表面,然后原位聚合制备了聚醚胺官能化GO(PFAG)改性的WPU复合材料;当PAFG的质量分数为0.05%时,与纯WPU涂层相比,复合涂层的水接触角由70.5°增加到98.5°,吸水率由8.31%降低到3.01%。Majidi等[74]在GO上化学键合了沸石咪唑酯骨架结构材料(ZIF-7,MOFs材料的一类),然后将其加入到PU涂料中,结果表明,相比未改性涂层(WCA约为76.20°),纯GO改性涂层因为GO的亲水性WCA值略降低到74.00°,但经ZIF-7表面修饰的GO改性的WCA可以达到81.87°,且紫外照射下WCA的下降幅度更小,说明产生的亲水性光氧化产物更少,改性涂层的抗紫外老化能力更强。

3.2.2 碳纳米管

碳纳米管(CNTs)除了具备碳纳米材料共同的优异的力学性能、高导电性和热稳定性外,还具备高弹性、空心管状结构以及高长径比(通常约为100-300)等独有的特点,从而成为新型涂层开发中的热门选择之一,通过加入功能化CNTs可以有效改善涂层的阻隔性能[75,76]。Lou等[77]制备了含有Ti3C2T X MXene纳米片和羟基功能化CNTs混合纳米填料的WPU复合材料,WCA测试结果表明纯WPU为亲水性,WCA值为66.78°,含有1.0 %Ti3C2T X MXene的涂层表现为疏水性,WCA为98.15°,而含有0.95%Ti3C2T X MXene和0.05%CNTs的混合填料的WPU疏水性得到了进一步提高,WCA达到104.83°,表明了纳米填料本身和彼此间的氢键相互作用对涂层疏水性的贡献。Li等[78]通过一锅法两步反应将全氟烷基硅烷共价接枝到多壁碳纳米管(MWCNTs)表面,氟硅官能化的MWCNTs在PU基质中的分散性增强;仅加入羟基化MWCNTs的复合材料WCA值在72°~86°的范围内,而加入相同含量氟硅官能化MWCNTs的PU疏水性显著增强,根据改性时使用的丙烯酸全氟烷基酯种类的不同,WCA可分别增加到118°和130°。

3.3 金属或金属氧化物纳米材料

掺杂金属或金属氧化物纳米颗粒可以提高有机聚合物涂层的实用性、耐用性或赋予其特定的功能,涂料中常用的填料包括TiO2、ZnO等[79~81],关于CeO2等具备特定功能性的金属氧化物用作填料的研究也在增加。该种改性方法除了可以通过提高涂层表面粗糙度、引入疏水基团等方法提高PU涂层疏水性外,通常还可以实现诸如耐火性、防腐性、抗菌性等特定功能,不同种类和复合结构的金属或金属氧化物纳米材料掺杂改性是制备新型复合功能涂层的常用方法之一。

3.3.1 TiO2纳米粒子

TiO2具备良好的光电化学和电子性能,在智能涂料、锂离子电池电极、光催化、太阳能电池等领域应用广泛[82,83]。Siyanbola等[84]合成了用1, 1, 1-三(羟甲基)丙烷进行表面修饰的功能化纳米TiO2颗粒(TiO2-TMP),并将其通过原位聚合反应化学键合到以蓖麻油为多元醇软段链原料、以聚(环氧氯丙烷)三醇为扩链剂的改性杂化PU涂料中。随着TiO2-TMP纳米颗粒含量的增加,涂层的干燥时间、热稳定性、力学性能和抗菌性能均有所改善,WCA由未经TiO2-TMP改性时的70.3°增加到TiO2-TMP含量为1.0%时的90.3°。Król等[85]用MDI对纳米TiO2进行功能化改性,得到了表面含有-NH2基团的改性TiO2,并将其用于阳离子型WPU的疏水改性。结果表明改性纳米填料的加入使薄膜由亲水性转为疏水性,且随着改性TiO2含量的增加疏水性增强,WCA由0.2%时的(70.0  ±  0.6)°增加到2%时的(101.7  ±  1.0)°。

但TiO2的加入导致光催化活性的增强,可能加快聚合物基质的光降解[86],为了拓展其应用领域可掺杂其他类型的无机填料协同改性,如Chen等[87]在TiO2纳米管和纳米纤维的表面涂覆一层SiO2,作为纳米填料用于改性自清洁PU涂层。纳米SiO2/TiO2的加入使得PU涂层的疏水性和机械强度得到增强,且随着SiO2用量的增加紫外线照射前后涂层的WCA差距变得更小,抗紫外性能有所增强。

3.3.2 ZnO纳米粒子

ZnO由于其高长径比、机械强度、紫外线吸收、耐磨性和抗菌活性等特点而受到研究人员的关注,自然来源广泛且易于制备,多用于抗菌和防腐功能改性[88]。通过对ZnO进行表面改性引入疏水基团,既可以结合表面粗糙度的增加增强涂层的疏水性,也可以改善纳米填料在涂层中的分散性、合成多功能的复合涂层[89]。Wang等[90]用壳聚糖对ZnO进行表面修饰后、加入预聚体中继续原位聚合制备生物基WPU,涂层的WCA由未经改性的(66.6 ± 0.2)°最大可达到(75.6 ± 0.6)°。John等[91]制备了3-氨丙基三乙氧基硅烷接枝的ZnO纳米颗粒,作为填料加入聚二甲基硅氧烷(PDMS)改性的生物基PU中,得到的超疏水涂层WCA可达到151°。Xie等[92]采用简便的喷涂和共固化方法,在半固化的丙烯酸聚氨酯(PUA)涂层上喷涂经十六烷基三甲氧基硅烷表面改性的、两种不同尺寸混合的疏水性ZnO纳米颗粒悬浮液,固化后得到超疏水涂层,结果表明涂层表面具有微米级的分层粗糙结构,WCA达到171°。

3.3.3 CeO2纳米粒子

CeO2可以在较宽的pH范围内形成稳定的氢氧化物,作为填料可以提高涂层的抗腐蚀性能[93,94]。Wang等[95]合成了含有二硫键的、使用羟基封端的聚甲基丙烯酸氟烷基酯(HTPFMA)作为软段链的自修复疏水性WPU涂层,然后将氟化的CeO2纳米颗粒悬浮液喷涂在低碳钢基板上,制备了超疏水涂层。结果表明,相较于未加入氟化CeO2的FWPU涂层,加入氟化CeO2后的涂层WCA由109°增加到了157°(图5);超疏水性和CeO2的缓蚀作用使得涂层表现出优异的防腐性能,电化学阻抗谱(EIS)低频阻抗模值为7.2 × 109 Ω·cm2,且浸泡60 d后仍表现出良好的防腐性能。

图5

图5   PUA@ZnO涂层的SEM表面形貌和WCA示意图[95]

Fig.5   Low (a, d) and high (b, e) magnification SEM images of the surface (a, b) and cross section (d, e) of ZnO@PUA,optical image of a static water droplet (5 µL) on ZnO@PUA (c), and schematic diagram of existing of ZnO nanoparticles in ZnO@PUA (f)[95]


4 总结与展望

疏水改性聚氨酯涂层在金属材料的防水、防腐蚀、防磨损领域存在巨大的应用潜力,近年来相关研究也多见报道,受到广泛关注。但在改性研究方面仍存在以下问题:

(1) 氟改性WPU方面:氟改性涂层疏水性一般相当出色,但由于含氟单体产量较低且价格昂贵,目前尚未实现大规模的生产应用;随着涂层破损含氟成分进入环境尤其是水体中,会对环境造成污染甚至影响到人的健康。

(2) 硅改性WPU方面:虽然具备原料易得、环境友好、改性手段丰富等突出优点,但目前仅使用硅改性对WPU涂层疏水性的提升有限。通过构建微纳米级粗糙结构才能进一步提高疏水性,但此类涂层的耐磨性又通常欠佳,因此需要加强协同其他改性手段。

(3) 纳米填料改性WPU方面:纳米填料容易产生团聚现象,涂层的稳定性较差,需要通过对纳米填料进行表面改性,提高其与树脂基体的相容性。相关研究较少关联纳米填料与树脂基体之间的相互作用。

(4) 多为经验结果导向,较少从分子角度出发进行涂层设计的系统理论;理论研究进展较少,对复合涂层的微观结构和各组分间的相互作用还缺乏深入认知。

(5) 部分复合涂层的性能优异但合成路径较复杂,从实验室规模的合成到工业生产应用尚需优化工艺;相关研究倾向于单纯的性能探究,缺少对耐久性和经济性的讨论。

参考文献

Arukalam I O, Oguzie E E, Li Y.

Nanostructured superhydrophobic polysiloxane coating for high barrier and anticorrosion applications in marine environment

[J]. J. Colloid Interface Sci., 2018, 512: 674

[本文引用: 1]

Phalak G A, Patil D M, Mhaske S T.

Synthesis and characterization of thermally curable guaiacol based poly(benzoxazine-urethane) coating for corrosion protection on mild steel

[J]. Eur. Polym. J., 2017, 88: 93

Ma Y, Han F, Li Z, et al.

Acidic-functionalized ionic liquid as corrosion inhibitor for 304 stainless steel in aqueous sulfuric acid

[J]. ACS Sustainable Chem. Eng., 2016, 4: 5046

[本文引用: 1]

McChesney K, Trask M, Penner D, et al.

Internal cathodic protection to study the erosion-corrosion of AISI 1018 carbon steel

[J]. Can. J. Chem. Eng., 2022, 100: 35

[本文引用: 1]

Li E T, Liu S L, Luo F, et al.

Amino acid imidazole ionic liquids as green corrosion inhibitors for mild steel in neutral media: synthesis, electrochemistry, surface analysis and theoretical calculations

[J]. J. Electroanal. Chem., 2023, 944: 117650

[本文引用: 1]

Aslam R, Mobin M, Zehra S, et al.

A comprehensive review of corrosion inhibitors employed to mitigate stainless steel corrosion in different environments

[J]. J. Mol. Liq., 2022, 364: 119992

[本文引用: 1]

Gao X Y, Guo Z G.

Mechanical stability, corrosion resistance of superhydrophobic steel and repairable durability of its slippery surface

[J]. J. Colloid Interface Sci., 2018, 512: 239

[本文引用: 1]

Liu X W, Xiong J P, Lv Y W, et al.

Study on corrosion electrochemical behavior of several different coating systems by EIS

[J]. Prog. Org. Coat., 2009, 64: 497

[本文引用: 1]

Montemor M F, Vicente C.

Functional self-healing coatings: a new trend in corrosion protection by organic coatings

[A]. Wandelt K. Encyclopedia of Interfacial Chemistry [M]. Oxford: Elsevier, 2018: 236

[本文引用: 1]

Schmidt D P, Shaw B A, Sikora E, et al.

Corrosion protection assessment of sacrificial coating systems as a function of exposure time in a marine environment

[J]. Prog. Org. Coat., 2006, 57: 352

[本文引用: 1]

Yuan S, Zou J J, Lin N M, et al.

Understanding the protective role of a gradient titanium oxide ceramic layer on Ti6Al4V against corrosion via analyses of Mott-Schottky curve and electron work function (EWF)

[J]. Ceram. Int., 2022, 48: 31896

[本文引用: 1]

Zhao G, Zhao M T, Zhang W H.

Preparation of Ni-TiO2 composite coatings on Q390E steel by pulse electrodeposition and their photocatalytic and corrosion resistance properties

[J]. Int. J. Electrochem. Sci., 2022, 17: 220819

[本文引用: 1]

Suleiman R K, Saleh T A, Al Hamouz O C S, et al.

Corrosion and fouling protection performance of biocide-embedded hybrid organosiloxane coatings on mild steel in a saline medium

[J]. Surf. Coat. Technol., 2017, 324: 526

[本文引用: 1]

Das A, Mahanwar P.

A brief discussion on advances in polyurethane applications

[J]. Adv. Ind. Eng. Polym. Res., 2020, 3: 93

[本文引用: 1]

Lyon S B, Bingham R, Mills D J.

Advances in corrosion protection by organic coatings: what we know and what we would like to know

[J]. Prog. Org. Coat., 2017, 102: 2

[本文引用: 1]

Zahid M, Mazzon G, Athanassiou A, et al.

Environmentally benign non-wettable textile treatments: a review of recent state-of-the-art

[J]. Adv. Colloid Interface Sci., 2019, 270: 216

[本文引用: 1]

McLachlan M S, Felizeter S, Klein M, et al.

Fate of a perfluoroalkyl acid mixture in an agricultural soil studied in lysimeters

[J]. Chemosphere, 2019, 223: 180

DOI      PMID      [本文引用: 1]

Perfluoroalkyl acids (PFAAs) are environmental contaminants of concern in both food and drinking water. PFAA fate in agricultural soil is an important determinant of PFAA contamination of groundwater and crops. The fate of C4-C14 perfluorinated carboxylic acids (PFCAs) and two perfluorinated sulfonic acids (PFSAs) in an agricultural soil was studied in a field lysimeter experiment. Soil was spiked with PFAAs at four different levels and crops were planted. PFAA concentrations in soil were measured at the beginning and end of the growing season. Lysimeter drainage water was collected and analysed. The concentrations of all PFAAs decreased in the surface soil during the growing season, with the decrease being negatively correlated with the number of fluorinated carbons in the PFAA molecule. PFAA transfer to the drainage water was also negatively correlated with the number of fluorinated carbons. For the C11-C14 PFCAs most of the decrease in soil concentration was attributed to the formation of non-extractable residues. For the remaining PFAAs leaching was the dominant removal process. Leaching was concentration dependent, with more rapid removal from the soils spiked with higher PFAA levels. Model simulations based on measured K values under-predicted removal by leaching. This was attributed to mixture effects that reduced PFAA sorption to soil.Copyright © 2019 The Authors. Published by Elsevier Ltd.. All rights reserved.

Li J W, Cheng Y H, Lee H T, et al.

Synthesis and properties of castor oil-based polyurethane containing short fluorinated segment

[J]. J. Appl. Polym. Sci., 2020, 137: 49062

[本文引用: 1]

Li J W, Tsai H A, Lee H T, et al.

Synthesis and properties of side chain fluorinated polyurethanes and evaluation of changes in microphase separation

[J]. Prog. Org. Coat., 2020, 145: 105702

[本文引用: 1]

Wu J H, Wang C H, Lin W, et al.

A facile and effective approach for the synthesis of fluorinated waterborne polyurethanes with good hydrophobicity and antifouling properties

[J]. Prog. Org. Coat., 2021, 159: 106405

[本文引用: 2]

Xu W, Wang W, Hao L F, et al.

Synthesis and properties of novel triazine-based fluorinated chain extender modified waterborne polyurethane hydrophobic films

[J]. Prog. Org. Coat., 2021, 157: 106282

[本文引用: 1]

Han Y T, Jiang Y Z, Tan P F, et al.

Waterborne fluorinated polyurethane containing guanidine for antibacterial and anti-inorganic fouling coatings with improved mechanical properties

[J]. Prog. Org. Coat., 2022, 173: 107219

[本文引用: 1]

Zhang L, Kong Q G, Kong F X, et al.

Synthesis and surface properties of novel fluorinated polyurethane base on F-containing chain extender

[J]. Polym. Adv. Technol., 2020, 31: 616

[本文引用: 1]

Wang X, Hu J J, Li Y, et al.

The surface properties and corrosion resistance of fluorinated polyurethane coatings

[J]. J. Fluorine Chem., 2015, 176: 14

[本文引用: 1]

Lahiouhel D, Ameduri B, Boutevin B.

A telechelic fluorinated diol from 1,6-diiodoperfluorohexane

[J]. J. Fluorine Chem., 2001, 107: 81

[本文引用: 1]

Zeng S H, Wang Q M, Chen P P, et al.

Controllable hydrolytic stability of novel fluorinated polyurethane films by incorporating fluorinated side chains

[J]. Prog. Org. Coat., 2022, 165: 106729

[本文引用: 1]

Mohanty S, Borah K, Kashyap S S, et al.

Development of hydrophobic polyurethane film from structurally modified castor oil and its anticorrosive performance

[J]. Polym. Adv. Technol., 2023, 34: 351

[本文引用: 1]

Li L L, Wang X, Li Z, et al.

The synthesis and curing kinetics study of a new fluorinated polyurethane with fluorinated side chains attached to soft blocks

[J]. New J. Chem., 2016, 40: 596

[本文引用: 1]

Li L L, Li Y, Wang X, et al.

Synthesis and application of fluorinated epoxy compounds

[J]. Emerging Mater. Res., 2015, 4: 102

[本文引用: 1]

Li N, Yang R, Tian Y, et al.

Synthesis of durable hydrophobic fluorinated polyurethanes with exceptional cavitation erosion resistance

[J]. Tribol. Int., 2023, 177: 107973

[本文引用: 1]

Li N, Tian Y, Yang R, et al.

Superhydrophobic surface on arc-sprayed aluminum coating via fluorinated polyurethane modification: preparation and application in corrosion protection

[J]. J. Therm. Spray Technol., 2022, 31: 1906

[本文引用: 1]

Fu H Q, Yan C B, Zhou W, et al.

Nano-SiO2/fluorinated waterborne polyurethane nanocomposite adhesive for laminated films

[J]. J. Ind. Eng. Chem., 2014, 20: 1623

[本文引用: 1]

Jiang G C, Tuo X L, Wang D E, et al.

Preparation, characterization, and properties of fluorinated polyurethanes

[J]. J. Polym. Sci., 2009, 47A: 3248

[本文引用: 1]

Wu Z F, Wang H, Tian X Y, et al.

Surface and mechanical properties of hydrophobic silica contained hybrid films of waterborne polyurethane and fluorinated polymethacrylate

[J]. Polymer, 2014, 55: 187

[本文引用: 1]

Yu F Y, Gao J, Liu C P, et al.

Preparation and UV aging of nano-SiO2/fluorinated polyacrylate polyurethane hydrophobic composite coating

[J]. Prog. Org. Coat., 2020, 141: 105556

[本文引用: 3]

Wang X Y, Cui Y, Wang Y N, et al.

Preparation and characteristics of crosslinked fluorinated acrylate modified waterborne polyurethane for metal protection coating

[J]. Prog. Org. Coat., 2021, 158: 106371

[本文引用: 1]

Zheng F, Deng H T, Zhao X J, et al.

Fluorinated hyperbranched polyurethane electrospun nanofibrous membrane: fluorine-enriching surface and superhydrophobic state with high adhesion to water

[J]. J. Colloid Interface Sci., 2014, 421: 49

[本文引用: 1]

Liu Y B, Gao S, Liu J, et al.

Biomimetic slippery liquid-infused porous surfaces fabricated by porous fluorinated polyurethane films for anti-icing property

[J]. Prog. Org. Coat., 2023, 179: 107524

[本文引用: 1]

in Y, Li C, Zhang N, et al.

A novel fluorinated capping agent and silicone synergistically enhanced waterborne polyurethane

[J]. Colloids Surf., 2022, 643A: 128753

[本文引用: 1]

Wen J, Sun Z, Xiang J, et al.

Preparation and characteristics of waterborne polyurethane with various lengths of fluorinated side chains

[J]. Appl. Surf. Sci., 2019, 494: 610

[本文引用: 1]

Karna N, Joshi G M, Mhaske S T.

Structure-property relationship of silane-modified polyurethane: a review

[J]. Prog. Org. Coat., 2023, 176: 107377

[本文引用: 1]

Hussain S S, Sykam K, Narayan R, et al.

A route to high-solid coatings: hydrophobic polyurethane triazoles via bulk polymerization of azide-alkyne cycloaddition

[J]. Prog. Org. Coat., 2023, 179: 107529

[本文引用: 1]

Zhao Y T, Hao T H, Wu W, et al.

A novel moisture-controlled siloxane-modified hyperbranched waterborne polyurethane for durable superhydrophobic coatings

[J]. Appl. Surf. Sci., 2022, 587: 152446

[本文引用: 1]

Ma X X, Chen J Q, Yang Y C, et al.

Siloxane and polyether dual modification improves hydrophobicity and interpenetrating polymer network of bio-polymer for coated fertilizers with enhanced slow release characteristics

[J]. Chem. Eng. J., 2018, 350: 1125

[本文引用: 1]

Feng C, Li Y J, Yang D, et al.

Well-defined graft copolymers: from controlled synthesis to multipurpose applications

[J]. Chem. Soc. Rev., 2011, 40: 1282

DOI      PMID      [本文引用: 3]

Graft copolymers with a large number of side chains chemically attached onto a linear backbone are endowed with unusual properties thanks to their confined and compact structures, including wormlike conformation, compact molecular dimensions and notable chain end effects. Growing attention has been paid to these interesting macromolecules due to their importance in understanding the correlation between architectures and properties, as well as their potential applications. To date, the synthesis and properties of graft copolymers in both solution and bulk have been extensively investigated, along with their applications. In this tutorial review, recent advances in synthetic approaches towards the construction of well-defined graft copolymers are discussed in detail and applications of these interesting macromolecules are highlighted by selected examples.

Ren L F, Yu S J, Niu Q X, et al.

Construction of amphiphilic comb-like waterborne polyurethane to balance emulsion stability and film hydrophobicity

[J]. Prog. Org. Coat., 2022, 173: 107197

[本文引用: 1]

Cai W, Mu X W, Li Z X, et al.

Poly(dimethyl siloxane)-grafted black phosphorus nanosheets as filler to enhance moisture-resistance and flame-retardancy of thermoplastic polyurethane

[J]. Mater. Chem. Phys., 2022, 286: 126189

[本文引用: 1]

Liu W M, Wang H M, Hang G H, et al.

Reprocessable polyhydroxyurethane networks crosslinked with trifunctional polyhedral oligomeric silsesquioxanes via Diels-Alder reaction

[J]. Polymer, 2023, 283: 126231

[本文引用: 1]

Kannan A, Muthuraj C, Mayavan A, et al.

Multifaceted applications of polyhedral oligomeric silsesquioxane and their composites

[J]. Mater. Today Chem., 2023, 30: 101568

[本文引用: 1]

Madbouly S A, Otaigbe J U, Nanda A K, et al.

Rheological behavior of POSS/polyurethane-urea nanocomposite films prepared by homogeneous solution polymerization in aqueous dispersions

[J]. Macromolecules, 2007, 40: 4982

[本文引用: 1]

Zhang F Y, Wang S, Liu W Q, et al.

Design on the corrosion protection of eco-friendly and multifunctional polyhedral oligomeric silsesquioxane functionalized graphene oxide reinforced waterborne polyurethane

[J]. Colloids Surf., 2022, 640A: 127718

[本文引用: 1]

Lacruz A, Salvador M, Blanco M, et al.

Biobased waterborne polyurethane-ureas modified with POSS-OH for fluorine-free hydrophobic textile coatings

[J]. Polymers, 2021, 13: 3526

[本文引用: 1]

Zhao H, She W, Shi D A, et al.

Polyurethane/POSS nanocomposites for superior hydrophobicity and high ductility

[J]. Composites, 2019, 177B: 107441

[本文引用: 3]

Wang Y F, An Q F, Yang B W.

Synthesis of UV-curable polyurethane acrylate modified with polyhedral oligomeric silsesquioxane and fluorine for iron cultural relic protection coating

[J]. Prog. Org. Coat., 2019, 136: 105235

[本文引用: 1]

Zhao H, Gao W C, Li Q, et al.

Recent advances in superhydrophobic polyurethane: preparations and applications

[J]. Adv. Colloid Interface Sci., 2022, 303: 102644

[本文引用: 1]

Serkis M, Špírková M, Hodan J, et al.

Nanocomposites made from thermoplastic waterborne polyurethane and colloidal silica. The influence of nanosilica type and amount on the functional properties

[J]. Prog. Org. Coat., 2016, 101: 342

[本文引用: 1]

Zhang T T, Yin J L, Su Q X, et al.

The effect of modified SiO2 on properties of fluorinated acrylate-polyurethane coatings

[J]. Polyurethane Ind., 2019, 34(3): 19

[本文引用: 1]

张甜甜, 尹金雷, 宿倩雪 .

改性SiO2对氟化丙烯酸酯-聚氨酯涂层性能的影响

[J]. 聚氨酯工业, 2019, 34(3): 19

[本文引用: 1]

Hu L Q, Pu Z J, Tian Y H, et al.

Preparation and properties of fluorinated silicon two-component polyurethane hydrophobic coatings

[J]. Polym. Int., 2020, 69: 448

[本文引用: 1]

Wu G M, Liu D, Chen J, et al.

Preparation and properties of super hydrophobic films from siloxane-modified two-component waterborne polyurethane and hydrophobic nano SiO2

[J]. Prog. Org. Coat., 2019, 127: 80

[本文引用: 3]

Guo J C, Wang C D, Yu H B, et al.

Preparation of a wear-resistant, superhydrophobic SiO2/silicone-modified polyurethane composite coating through a two-step spraying method

[J]. Prog. Org. Coat., 2020, 146: 105710

Qin F M, Li X Y, Wang J Y, et al.

Preparation of silicone modified polyurethane/nano-SiO2 composite superhydrophobic coating

[J]. Acta Polym. Sin., 2021, 52: 1165

[本文引用: 2]

秦凤鸣, 李香玉, 王锦艳 .

有机硅改性聚氨酯/纳米SiO2复合超疏水涂层的制备

[J]. 高分子学报, 2021, 52: 1165

[本文引用: 2]

Cai C J, Sang N N, Teng S C, et al.

Superhydrophobic surface fabricated by spraying hydrophobic R974 nanoparticles and the drag reduction in water

[J]. Surf. Coat. Technol., 2016, 307: 366

[本文引用: 1]

Wang Z H, Yuan L, Liang G Z, et al.

Mechanically durable and self-healing super-hydrophobic coating with hierarchically structured KH570 modified SiO2-decorated aligned carbon nanotube bundles

[J]. Chem. Eng. J., 2021, 408: 127263

[本文引用: 1]

Jiang W B, Dai A Q, Zhou T, et al.

Hybrid polysiloxane/polyacrylate/nano-SiO2 emulsion for waterborne polyurethane coatings

[J]. Polym. Test., 2019, 80: 106110

[本文引用: 1]

Hou L X, Cui X P, Guan B, et al.

Synthesis of a monolayer fullerene network

[J]. Nature, 2022, 606: 507

[本文引用: 2]

Kim H, Gao S, Hong S, et al.

Multifunctional primer film made from percolation enhanced CNT/Epoxy nanocomposite and ultrathin CNT network

[J]. Composites, 2019, 175B: 107107

[本文引用: 1]

Wang J N, Zhang Y L, Liu Y, et al.

Recent developments in superhydrophobic graphene and graphene-related materials: from preparation to potential applications

[J]. Nanoscale, 2015, 7: 7101

[本文引用: 1]

Wang Z L, Ren Y C, Wu F H, et al.

Advances in the research of carbon-, silicon-, and polymer-based superhydrophobic nanomaterials: synthesis and potential application

[J]. Adv. Colloid Interface Sci., 2023, 318: 102932

[本文引用: 1]

He J M, Li M, Li D X, et al.

Fabrication of azobenzene non-covalent bonding grafting graphene composite and its application in weathering and corrosion resistant polyurethane coating

[J]. Polym. Degrad. Stab., 2022, 206: 110157

[本文引用: 1]

Oguz B, Hayri-Senel T, Kahraman E, et al.

Improving corrosion resistance and electrical conductivity of sunflower oil based polyurethane coatings by graphene oxide/reduced graphene oxide

[J]. Polym. Test., 2023, 124: 108057

[本文引用: 1]

Zhu M J, Li S Y, Sun Q Y, et al.

Enhanced mechanical property, chemical resistance and abrasion durability of waterborne polyurethane based coating by incorporating highly dispersed polyacrylic acid modified graphene oxide

[J]. Prog. Org. Coat., 2022, 170: 106949

[本文引用: 1]

Shu B, Liu Z L, Liu Z Q, et al.

Preparation of SiO2-decorated GO sheets and their influences on the properties of castor oil-based polyurethane coating film

[J]. Prog. Org. Coat., 2023, 175: 107382

[本文引用: 1]

Zhang F Y, Liu W Q, Liang L Y, et al.

Application of polyether amine intercalated graphene oxide as filler for enhancing hydrophobicity, thermal stability, mechanical and anti-corrosion properties of waterborne polyurethane

[J]. Diam. Relat. Mater., 2020, 109: 108077

[本文引用: 1]

Majidi R, Keramatinia M, Ramezanzadeh B, et al.

Weathering resistance (UV-shielding) improvement of a polyurethane automotive clear-coating applying metal-organic framework (MOF) modified GO nano-flakes (GO-ZIF-7)

[J]. Polym. Degrad. Stab., 2023, 207: 110211

[本文引用: 1]

Cai G Y, Xiao S, Deng C M, et al.

CeO2 grafted carbon nanotube via polydopamine wrapping to enhance corrosion barrier of polyurethane coating

[J]. Corros. Sci., 2021, 178: 109014

[本文引用: 1]

Jing L C, Wang T, Cao W W, et al.

Water-based polyurethane composite anticorrosive barrier coating via enhanced dispersion of functionalized graphene oxide in the presence of acidified multi-walled carbon nanotubes

[J]. Prog. Org. Coat., 2020, 146: 105734

[本文引用: 1]

Lou D, Chen H, Liu J Y, et al.

Improved anticorrosion properties of polyurethane nanocomposites by Ti3C2T x MXene/functionalized carbon nanotubes for corrosion protection coatings

[J]. ACS Appl. Nano Mater., 2023, 6: 12515

[本文引用: 1]

Li S S, Du X, Hou C Y, et al.

One-pot two-step perfluoroalkylsilane functionalization of multi-walled carbon nanotubes for polyurethane-based composites

[J]. Compos. Sci. Technol., 2017, 143: 46

[本文引用: 1]

Li J H, Hong R Y, Li M Y, et al.

Effects of ZnO nanoparticles on the mechanical and antibacterial properties of polyurethane coatings

[J]. Prog. Org. Coat., 2009, 64: 504

[本文引用: 1]

Verma J, Gupta A, Kumar D.

Steel protection by SiO2/TiO2 core-shell based hybrid nanocoating

[J]. Prog. Org. Coat., 2022, 163: 106661

Ramesan M T, Santhi V, Bahuleyan B K, et al.

Structural characterization, material properties and sensor application study of in situ polymerized polypyrrole/silver doped titanium dioxide nanocomposites

[J]. Mater. Chem. Phys., 2018, 211: 343

[本文引用: 1]

Xu Q F, Liu Y, Lin F J, et al.

Superhydrophobic TiO2–polymer nanocomposite surface with UV-induced reversible wettability and self-cleaning properties

[J]. ACS Appl. Mater. Interfaces, 2013, 5: 8915

[本文引用: 1]

Charpentier P A, Burgess K, Wang L, et al.

Nano-TiO2/polyurethane composites for antibacterial and self-cleaning coatings

[J]. Nanotechnology, 2012, 23: 425606

[本文引用: 1]

Siyanbola T O, Ajayi A A, Vinukonda S, et al.

Surface modification of TiO2 nanoparticles with 1,1,1-Tris(hydroxymethyl)propane and its coating application effects on castor seed oil-PECH blend based urethane systems

[J]. Prog. Org. Coat., 2021, 161: 106469

[本文引用: 1]

Król P, Szlachta M, Pielichowska K.

Hydrophilic and hydrophobic films based on polyurethane cationomers containing TiO2 nanofiller

[J]. Prog. Org. Coat., 2022, 162: 106524

[本文引用: 1]

Kasanen J, Suvanto M, Pakkanen T T.

UV stability of polyurethane binding agent on multilayer photocatalytic TiO2 coating

[J]. Polym. Test., 2011, 30: 381

[本文引用: 1]

Chen C, Xu W Z, Charpentier P A.

SiO2 encapsulated TiO2 nanotubes and nanofibers for self-cleaning polyurethane coatings

[J]. J. Photochem. Photobiol., 2017, 348A: 226

[本文引用: 1]

El Saeed A M, El-Fattah M A, Azzam A M.

Synthesis of ZnO nanoparticles and studying its influence on the antimicrobial, anticorrosion and mechanical behavior of polyurethane composite for surface coating

[J]. Dyes Pigm., 2015, 121: 282

[本文引用: 1]

Wang Z Y, Bockstaller M R, Matyjaszewski K.

Synthesis and applications of ZnO/polymer nanohybrids

[J]. ACS Mater. Lett., 2021, 3: 599

[本文引用: 1]

Wang C S, Zhang J, Chen J H, et al.

Bio-polyols based waterborne polyurethane coatings reinforced with chitosan-modified ZnO nanoparticles

[J]. Int. J. Biol. Macromol., 2022, 208: 97

DOI      PMID      [本文引用: 1]

The development of environmentally friendly waterborne polyurethane (WPU) coatings from bio-based polyols has received much attention due to increasing environmental concern and the depletion of petroleum resources. In this study, the WPU coatings derived from castor oil and soy polyol were modified by chain extender [bis(2-hydroxyethyl)amino]-methyl-phosphonic acid dimethyl ester. The effect of chitosan-modified ZnO (CS-ZnO) nanoparticles content on the properties of WPU/CS-ZnO coatings and their films were systematically investigated. The results indicated that WPU/CS-ZnO coatings displayed excellent storage stability and the particle sizes firstly decreased and then increased with CS-ZnO loading. CS-ZnO could improve tensile strength and Young's modulus but reduce the optical transparency of WPU/CS-ZnO films. CS-ZnO has a prominent reinforcement effect on the WPU/CS-ZnO matrix. With the addition of 2 wt% CS-ZnO, the tensile strength and Young's modulus of the WPU/CS-ZnO2 film reached 13.4 and 112.1 MPa, 1.68 and 2.6 times over neat WPU film, respectively. TGA results showed that the thermal stability of WPU/CS-ZnO films improved with increased CS-ZnO content. Furthermore, the WPU/CS-ZnO films' wettability decreased with the introduction of CS-ZnO. This work provides a simple and efficient strategy for preparing environmentally friendly bio-based WPU coatings, which are promising for application in the surface coating industry.Copyright © 2022 Elsevier B.V. All rights reserved.

John B, Rajimol P R, Rajan T P D, et al.

Design and fabrication of nano textured superhydrophobic and anti-corrosive silane-grafted ZnO/bio-based polyurethane bilayer coating

[J]. Surf. Coat. Technol., 2022, 451: 129036

[本文引用: 1]

Xie C, Li C Q, Xie Y, et al.

ZnO/Acrylic polyurethane nanocomposite superhydrophobic coating on aluminum substrate obtained via spraying and co-curing for the control of marine biofouling

[J]. Surf. Interfaces, 2021, 22: 100833

[本文引用: 1]

Liu W T, Mo Z L, Shuai C, et al.

Fabrication of TiO2/CeO2/PPS corrosion protective hydrophobic coating by air spraying

[J]. Colloids Surf., 2022, 647A: 129056

[本文引用: 1]

Pourhashem S, Saba F, Duan J Z, et al.

Polymer/Inorganic nanocomposite coatings with superior corrosion protection performance: a review

[J]. J. Ind. Eng. Chem., 2020, 88: 29

[本文引用: 1]

Wang H, Hu H M, Zhou C Y, et al.

Fabrication of self-healable superhydrophobic polyurethane coating based on functional CeO2 nanoparticles for long-term anti-corrosion application

[J]. Prog. Org. Coat., 2023, 183: 107799

[本文引用: 3]

/