中国腐蚀与防护学报, 2023, 43(2): 220-230 DOI: 10.11902/1005.4537.2022.087

中国腐蚀与防护学报编委、青年编委专栏

纳米填料在环氧防腐涂层中的应用研究进展

于芳, 王翔, 张昭,

浙江大学化学系 杭州 310027

Research Progress of Nanofillers for Epoxy Anti-corrosion Coatings

YU Fang, WANG Xiang, ZHANG Zhao,

Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, China

通讯作者: 张昭,E-mail:eaglezzy@zju.edu.cm,研究方向为抗腐防污自清洁涂料及电化学与功能材料

收稿日期: 2022-03-29   修回日期: 2022-04-21  

Corresponding authors: ZHANG Zhao, E-mail:eaglezzy@zju.edu.cm

Received: 2022-03-29   Revised: 2022-04-21  

作者简介 About authors

于芳,女,1996年生,硕士生

摘要

有机涂层因操作便捷、成本低廉在金属防腐领域备受青睐,其中环氧树脂因其显著的化学惰性、对基材的优异附着力和优良的力学性能而被广泛应用。然而环氧涂层在固化过程中因收缩或溶剂蒸发而产生空隙和导电通道,降低了其防腐效率。解决这一问题的策略是向环氧涂层中加入纳米颜填料。本文针对当下应用于环氧防腐涂层的纳米颜填料进行了总结,详细阐述了非金属纳米填料 (包括无机非金属纳米填料和有机纳米填料) 和金属纳米材料,特别是新型纳米填料 (MOFs材料和MXene材料) 的性能及改性现状,并对其应用前景进行了展望。

关键词: 环氧树脂 ; 纳米填料 ; 防腐

Abstract

Organic coatings play a significant role in corrosion protection of metallic materials due to their convenient operation and low cost. Among them, epoxy resin is the most widely used as coating substrate due to its excellent adhesion to materials to be coated, remarkable chemical inertness and mechanical properties. However, voids and conductive channels would form due to shrinkage or solvent evaporation during its curing process. To cope with it, nanoparticles, which can be effectively filled in the tiny pores of epoxy resins are added, thereby improving the barrier and anti-corrosion properties of the coating. However, nanoparticles are prone to agglomeration owing to their high specific surface area, and therefore have poor dispersibility in organic resins. Therefore, surface-modification is required to improve their compatibility with resins and therefore to achieve specific performance. In this paper, nano-fillers currently used for epoxy anti-corrosion coatings are summarized and classified into three categories, namely non-metallic nano-fillers (including inorganic non-metallic nano-fillers and organic nano-fillers), metallic nano-fillers and new nano-fillers (MOFs and MXene materials), also, the properties and modification strategies of nano-fillers are introduced in detail. Finally, the challenges and outlook of nano-fillers are discussed.

Keywords: epoxy resin ; nanofiller ; anti-corrosion

PDF (1004KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

于芳, 王翔, 张昭. 纳米填料在环氧防腐涂层中的应用研究进展. 中国腐蚀与防护学报[J], 2023, 43(2): 220-230 DOI:10.11902/1005.4537.2022.087

YU Fang, WANG Xiang, ZHANG Zhao. Research Progress of Nanofillers for Epoxy Anti-corrosion Coatings. Journal of Chinese Society for Corrosion and Protection[J], 2023, 43(2): 220-230 DOI:10.11902/1005.4537.2022.087

据不完全统计,全球每年因金属腐蚀造成巨大经济损失[1,2],并随之带来一系列安全问题[3],是众多行业面临的迫切问题。为了减缓金属腐蚀速率,科研工作者已开发出多种金属防腐措施,如阴极保护[4]、混合涂层[5]、缓蚀剂[6]和基材设计[7]等。其中,在金属表面涂覆有机涂层是目前最具前景且成本低廉的策略[8]。在众多有机涂层中,环氧树脂由于其显著的化学惰性、绝缘性和对金属的优异附着力而被广泛应用[9],预计到2022年全球市场价值将达到340亿美元[10]。然而,涂层在固化过程中因收缩或溶剂蒸发而产生空隙和导电通道[11],使得腐蚀介质通过其逐渐渗透到涂层中,导致涂层/金属界面附着力的劣化和金属腐蚀的发生[12]。研究表明[13],向环氧树脂涂料中填充颜填料,不仅可以显著降低涂层的孔隙率,而且可以有效提高涂层的阻隔性能,从而达到提高涂层耐蚀性能的目的;特别是纳米颜填料,因其尺寸较小,可以很好地填补因涂料固化过程中形成的孔隙,提高涂层致密性,继而显著提高涂层的防腐性能。

本文对目前广泛应用的主要纳米填料进行了分类,详细介绍了常规非金属纳米填料 (包括无机非金属材料和有机纳米填料) 和金属纳米填料,特别是新型纳米填料 (MOFs材料和MXene材料) 的性能、改性及应用研究进展。

1 非金属纳米粒子

1.1 无机非金属纳米粒子

无机非金属纳米材料主要以碳纳米材料为主,尤其是石墨烯及其衍生材料,近年来获得广泛关注。目前,针对无机非金属纳米材料自身及其与有机树脂基体的分散性的改善成为了该类研究的重点。

1.1.1 碳纳米粒子

二维碳纳米材料石墨烯 (GR) 及其衍生材料—氧化石墨烯 (GO) 因其特殊的层状结构,不仅具有较好的化学惰性和热稳定性,而且可以有效地延缓腐蚀介质的渗透,近年来在防腐应用领域备受青睐[14]。然而,GR结构中也存在固有的缺陷 (六边形结构中碳原子不规则缺失),其对涂层的防渗透性具有一定影响,可降低涂层的防腐性能。Zheng等[15]研究表明,通过聚多巴胺与GR之间的π-π相互作用可以修复GR结构中的固有缺陷、有效地提高涂层的耐蚀性能 (图1)。

图1

图1   聚多巴胺修复石墨烯的固有缺陷[15]

Fig.1   Repairing of intrinsic defects in graphene by polydopamine[15]


此外,GR在实际应用中还存在以下问题:(1) GR由于π-π相互作用及其疏水性,容易发生聚集、在环氧树脂中的分散性较差;(2) GR具有较高的电导率及较大多数金属更正的电势[16],虽然能为金属基材提供短期的有效保护作用,但因其与基材之间的电势差大,长期使用反而可能促进基材的腐蚀[17]。因此,针对上述问题,可以将GR与其它填料混合后再分散在树脂中[18],或在使用前对GR进行化学改性。

目前,GR的常见化学改性方法主要有两种:(1) 构建包含GR纳米片的层状结构复合材料。Ding等[19]通过模仿珍珠层的微观结构,利用GR纳米片在环氧树脂基质中的自组装构建了仿生GR-环氧树脂复合涂层;由于仿生涂层 (约98%的环氧聚合物) 显示出与珍珠层 (约96%的文石纳米片) 相反的成分,因而被称为“反珍珠层状”涂层。仿生GR-环氧树脂复合涂层的阻抗模量比空白 (环氧树脂) 涂层高出3个数量级,并显示出高度各向异性的导电性,可通过消除面外方向 (out-of-plane direction) 的电流泄漏来防止局部电偶腐蚀。Yan等[20]通过聚多巴胺的“桥”效应合成了具有包裹结构的Ti3C2/GR复合物,这种多层结构显著提高了涂层的耐磨性和耐腐蚀性能。Su等[21]通过聚苯胺 (PANI) 剥离GR纳米片以改善GR的层间距,然后通过离子交联、在GR纳米片上覆盖层状双金属氢氧化物,以此降低GR的导电率并改善填料与树脂之间的界面相容性,同时GR层之间的电活性PANI为涂层提供了自愈效果。(2) 通过有机化合物改性GR表面以提高GR的分散性及防腐性能。Sun等[22]采用化学气相沉积法将聚二甲基硅氧烷沉积在GR纳米片上,提高了GR纳米片的分散性和防腐性。Qiu等[23]通过GR与聚 (2-氨基噻唑) 之间的π-π相互作用,在超声辅助下获得了聚 (2-氨基噻唑) 功能化的片状GR,由此制备的环氧树脂涂层在3.5% (质量分数) NaCl溶液中浸泡80 d后仍表现出优异的防腐性能。Shi等[24]通过非共价功能化方法在水溶液中成功合成了羧甲基壳聚糖功能化石墨烯纳米材料,其可均匀地分散在水性环氧基体中;在3.5%NaCl水溶液中浸泡180 d后,加入纳米粒子的环氧树脂涂层阻抗值比纯环氧树脂涂层高约2个数量级。Liu等[25]将合成的β-环糊精/GR材料掺入到环氧树脂中充当“宏观交联剂”。通过GR表面的β-环糊精和聚合物链上的金刚烷之间的动态主客体识别,实现了涂层的高效自愈性能和优越的防腐性能。

氧化石墨烯 (GO),是石墨烯功能化的衍生物。其结构与石墨烯类似,接近平面并呈现二维网状结构,与石墨烯的不同之处是,GO是一种在表面和边缘上由羟基、羧基和环氧基等含氧官能团组成的单分子碳层物质[26]。然而,GO的含氧基团具有亲水性,不仅阻碍了GO在有机基质中的分散[27],而且加速了GO/金属界面处的金属腐蚀[28]

对GO的改性方法主要有以下三种:(1) 采用有机物进行功能化改性,赋予GO纳米粒子更好的分散性[29-31]、附着力[32]、绝缘性[33]、智能性[34,35]、阻隔性[36]和阻燃性[37]。Wu等[38]通过快速相转移过程合成了生物基腰果酚环氧改性GO纳米材料,附着的腰果酚环氧链改善了界面相互作用,从而抑制了树脂界面裂纹的拓展,赋予涂层优异的防腐性能。与此类似,Saurav等[39]也通过4-氟酚对GO的改性获得了功能化的纳米填料。Liu等[40]将改性TiO2和经过γ-(2,3-环氧丙氧基) 丙基三甲氧基硅烷改性的GO引入到环氧树脂中,发现相较于纯环氧树脂涂层,复合涂层的腐蚀电流密度降低了近两个数量级、环氧树脂交联密度和附着强度都有了不同程度的提升。由于胺类物质可以与GO表面的羧基反应形成酰胺键并参与环氧树脂的固化过程,因此也常被应用于GO的改性中。Lin等[41]在聚苯乙烯磺酸盐溶液中通过苯胺在GO表面原位聚合,生成了聚 (苯乙烯磺酸盐)-PANI/还原GO复合填料,然后将其与GO以不同的负载量作为填料加入到环氧树脂中形成复合涂层,发现该涂层较环氧树脂涂层或GO-环氧涂层具有更加优越的热力学和机械稳定性、拉伸韧性及防腐蚀性能。此外,Rajitha等[42]也采用2-氨基噻唑和2-氨基-4-(1-萘基) 噻唑对GO进行改性、实现了GO表面的官能化,Aghili等[43]则采用阴极电泳工艺在GO表面进行了苯二胺的沉积改性,Ye等[44]也通过GO与氨丙基异丁基多面体低聚倍半硅氧烷的一步反应实现了GO的表面改性。(2) 利用无机纳米粒子与GO之间的化学反应来实现GO的改性。Xue等[45]通过原位键合技术合成了具有网状结构的GO-羟基磷灰石纳米复合材料,羟基磷灰石晶体中的羟基可以通过与游离的侵蚀性氯离子进行置换而固定,以此来提高涂层防腐能力。Dhamodharan等[37]通过磷酸锆 (ZrP) 纳米粒子修饰GO,增加了GO在防腐涂层中的分散性。(3) 通过构建特殊的“三明治”层状结构,避免GO与基底的接触,以此实现防腐蚀目的。Zhu等[46]利用GO中-COO-和多巴胺中的-NH3+(pH=6.7) 之间的静电相互作用以及GO与多巴胺之间的氢键作用,使得GO中间层平行于基板并分布在两层环氧树脂涂层中间、形成“三明治”结构,从而通过延长腐蚀介质的扩散路径来达到防腐蚀的目的。Lv等[28]通过表面自组装和原位水热合成工艺在GO的双面上封装惰性纳米ZrO2颗粒,以此阻断GO与基底的接触,从而增强了环氧涂料的防腐性能。

除了GR及GO以外,其他纳米碳材料也常被作为颜填料加入到环氧树脂中以提高涂层的防腐性能。碳纳米管 (CNTs) 是由sp2杂化的碳原子形成的六方环网状拓扑结构,具有密度小、比表面积大、力学性能优良和良好的电磁特性等优点,已成为最有发展前景的低维纳米结构材料之一[47]。碳纳米管可以通过直接与其它颜填料混合来提高涂层防腐性能[48,49],也可以通过自身改性以达到防腐蚀目的。Cen等[47]制备了具有缓蚀作用的2-氨基吡啶官能化碳纳米管,发现其可在碳钢表面吸附形成一层疏水膜,从而阻碍腐蚀介质的扩散迁移,抑制碳钢的腐蚀。Rahmani等[50]使用十二胺 (作为缓释剂) 对热处理后的纳米金刚石进行非共价改性,然后将其作为环氧树脂的颜填料。经3.5%NaCl溶液浸泡30 d后,环氧树脂纳米复合涂层的低频阻抗仍至少比纯环氧树脂涂层高一个数量级。片状无机2D纳米材料g-C3N4[51-53]也被用于环氧树脂的防腐涂层。Xia等[53]利用聚多巴胺和硅烷偶联剂 (KH560) 的共改性,将亲水性有机薄膜包覆在g-C3N4纳米片上,极大地增强了g-C3N4在水溶液中的分散性及其与水性环氧树脂的相容性和界面相互作用,与纯水性环氧树脂相比,所制备涂层的阻抗值和涂层电阻百分比增益分别提高了977%和90.72%。此外,Li等[54]采用水热法合成了N掺杂碳纳米点,Dam-Johansen等[55]使用云杉和小麦秸秆为原料制备了生物炭,研究表明所制得的碳纳米材料均有效地提升了涂层的防腐蚀性能。

1.1.2 SiO2纳米粒子

SiO2由于硬度高、折射率低、成本低、透明度好、抗划伤性强及对UV辐射的吸收率高[56],在涂料工业中应用广泛,且多用于疏水型涂料的制备[57,58]。然而,除了分散性问题外,SiO2纳米颗粒表面存在有大量的-OH官能团,导致亲水性的SiO2纳米颗粒与非极性或弱极性涂层基质的相容性很差,而构建核壳结构是对SiO2纳米颗粒表面润湿性进行改性的有效方式[56,59]。Xia等[56]采用水热法在SiO2纳米颗粒表面覆盖MoS2纳米片、制备了核壳结构的纳米粒子,发现MoS2不仅改善了SiO2纳米颗粒与环氧树脂的相容性,而且提高了环氧树脂的耐腐蚀性与机械性能,其合成机理如图2所示。Wang等[60]通过使用还原GO功能化SiO2,制备了具有核壳结构的SiO2@环氧氧化石墨烯纳米粒子,发现其能显著地降低水性环氧树脂涂层的电导率,赋予涂层一定的抗静电能力。除了使用核壳结构之外,还可通过有机硅[61,62]或有机硅氧烷[63]对SiO2进行表面改性。如Ghanbari等[64]使用环氧基硅烷 (3-缩水甘油氧基丙基三甲氧基硅烷) 处理SiO2纳米粒子,以增加SiO2在环氧树脂中的分散性及所制得环氧树脂的耐腐蚀能力。

图2

图2   SiO2@MoS2核壳结构纳米粒子的合成机理[56]

Fig.2   Synthesis mechanism of SiO2@MoS2 nanoparticles with core-shell structure[56]


1.2 有机纳米材料

应用于环氧防腐涂层的有机纳米材料主要有聚苯胺[65-67]、苯并三唑[66]、聚吡咯[68]、四苯胺[69]和壳聚糖[70]等。鉴于有机纳米材料自身溶解性及与涂层中其它组分相容性问题[71],直接将其添加到涂层中会影响涂层的固化过程,破坏涂层网络结构的完整性,导致涂层附着力下降,抗腐蚀能力降低[72,73]。科研工作者使用纳米容器封装有机纳米材料并控制其释放[74],实现涂层防腐性能的同时,赋予涂层一定的自愈功能[27,75,76]。Chen等[34]利用超高度剥离的GR与聚多巴胺 (PDA) 的共吸附作用来提高对缓蚀剂苯并三唑 (BTA) 的负载,所制备的环氧树脂涂层会因腐蚀引起的pH变化而触发BTA的释放,实现防腐涂层的智能可修复功能,其合成及作用机理如图3所示。Cheng等[71]合成了聚多巴胺覆盖的羟基磷灰石“三明治”结构纳米容器,并使用其负载缓蚀剂苯并三唑,显著延长了涂层的服役寿命;含有1%纳米容器的复合涂层在3.5%NaCl溶液中浸泡60 d后仍表现出高阻抗值 (8.72×108 Ω·cm2)。Jin等[77]通过一步合成法制备了GR-SiO2纳米容器负载PANI,所得环氧树脂复合涂层在3.5%NaCl溶液中浸泡48 d后的阻抗值较纯环氧树脂的阻抗值增加3个数量级。Yao等[78]通过2-羟基磷酰基羧酸 (HPA) 与PANI氧化聚合合成了HPA-PANI纳米纤维,由于PANI的钝化作用以及HPA离子与低碳钢基材中铁离子的螯合作用,使得涂层具有防腐与自修复双重功能。

图3

图3   PDA和BTA改性的超高度剥离石墨烯 (PBG) 的合成及添加PBG的环氧树脂涂层 (EPBG) 的自愈性能示意图[34]

Fig.3   Schematic diagram of the synthesis of ultra-highly exfoliated graphene modified with PDA and BTA (PBG) and the healing performance of the epoxy resin coating added with PBG (EPBG)[34]


有机框架结构也被用于构建纳米容器,包括共价有机框架 (COF[29,79,80]),与金属有机框架 (MOFs[36,81,82])。Zhang等[29]使用1,3,5-三甲酰间苯三酚和对苯二胺生成COF;Liu等[79]则使用1,3,5-三甲酰间苯三酚和对苯二胺在纳米石墨烯片材上生长COF,使其负载苯并三唑,将所得纳米容器添加至环氧树脂中,实现了优异的耐腐蚀与自修复能力。除了使用有机框架结构,杂化中空介孔有机硅[83]和介孔二氧化硅纳米材料[84]等纳米容器也被用于有机涂层的防腐应用中。

纳米容器型纳米粒子的加入使得涂层获得了优异的防腐蚀性能,但是缓蚀剂的负载量仍较低,很少超过20% (相对于纳米容器),极大限制了纳米容器型纳米粒子的应用,但也为其后续发展提供了无限可能。

2 金属及金属化合物纳米粒子

金属及金属化合物纳米粒子主要以纳米颗粒状或片状形式应用于防腐涂层。

2.1 纳米颗粒状

作为颜填料,金属及金属化合物纳米粒子在应用时主要以过渡金属化合物为主。在实际防腐应用中,虽然环氧树脂主要是以环氧富锌涂层的方式出现,但近几年金属单质应用方面的研究[85]较少。纳米金属氧化物在应用时直接作为添加剂加入环氧树脂[86]方面的研究也较少,大多数是以改性后的形式加入,以期改善其性能或赋予其特殊功能。

2.1.1 TiO2纳米粒子

TiO2作为最重要和最广泛使用的白色颜料之一,具有良好的稳定性、优异的光催化性能和环境友好性[87]。对TiO2的改性多是通过引入有机化合物实现其功能化。Pour等[88]通过甲基丙烯酸缩水甘油酯和γ-甲基丙烯酰氧基丙基三甲基硅烷的自由基聚合,合成了含有环氧和硅烷醇官能团的大分子偶联剂,并将其接枝到TiO2纳米颗粒的表面,所获纳米粒子降低了防腐涂层的吸水率、增加了涂层的拉伸强度和对裂纹的抵抗能力。Huang等[89]采用无表面活性剂沉淀法制备了PANI-TiO2纳米复合超疏水涂层,涂层展现出了优异的疏水性能与防腐性能。Radoman等[87]则是采用维生素B6对TiO2进行表面修饰,通过原位聚合引入苯胺后得到了TiO2-苯胺核壳纳米复合材料,制得的环氧涂层与纯环氧树脂及加入苯胺的环氧树脂涂层相比,具有更低的介电损耗、更高的硬度及更好的防腐性能 (Fe3O4也可通过类似方法与PANI形成纳米核壳结构[90])。Hosseini等[91]采用原位聚合法合成了十二烷基苯磺酸掺杂的PANI-TiO2纳米复合材料,认为其可不同程度地提高涂层的阻隔性能和防腐性能。

2.1.2 Al2O3纳米粒子

与TiO2相似,Al2O3的改性也多是对其表面进行有机化合物改性。Tavandashti等[92]通过化学聚合法合成了Al2O3/PANI纳米粒子,并通过其与胺基团形成的络合物将Ce3+结合到聚合物结构中,制得了可显著提高涂层防腐蚀性能的杂化纳米粒子。Yu等[93]使用甲基三乙氧基硅烷和二乙氧基二甲基硅烷对Al2O3进行表面改性,并将改性得到的纳米颗粒SF-Al2O3加入到环氧树脂中,表明涂层的保护性能得到了显著的提高。Wu等[94]利用原子层沉积技术在聚脲/聚 (脲-甲醛) 微胶囊表面沉积致密的Al2O3纳米层,认为该层纳米粒子赋予了涂层优异的机械稳定性、热稳定性及良好的自愈性能。

除了上述TiO2与Al2O3之外,V2O5[95]、CoFe2O4[96]、TiN[97]等也可经PANI改性,以获得具有优异防腐能力的环氧树脂复合涂层。此外,与PANI相似结构的苯并三唑[98]和咪唑[99]也常用于对金属化合物的改性。另外,其他金属化合物纳米颗粒,如Fe3O4[100,101] (Feng等[100]利用磁性Fe3O4的磁响应实现海水中有机涂层的修复)、CoFe2O4[102,103]、铝酸盐纳米粒子 (Binyaseen等[104]制备了稀土掺杂铝酸盐纳米粒子,并将其引入环氧树脂中,获得了具有可持续性的光致发光和防腐性能的新型环氧树脂纳米复合涂层)、NiO[105]和CoO[106]等也常被用于提升环氧树脂复合涂层的防腐性能。

2.2 二维片状结构金属及金属化合物

与2D非金属纳米粒子类似,具有2D结构的金属纳米粒子也常用于提升涂层的防腐蚀性能。

2.2.1 α-磷酸锆 (α-ZrP)

α-ZrP具有优异的机械性能、热稳定性、屏蔽效果和高离子交换容量[107],其层间作用力较弱,可被插入和剥离,且剥离后利用率更高,因而可以在较低的填料浓度下提高有机基体的屏蔽和力学性能,使其作为颜填料具有优异特性[108]

Li等[108]使用三羟甲基-氨基甲烷对α-ZrP进行剥离后,对其酸化处理,然后使用3-氨基丙基三乙氧基硅烷 (KH-550) 将其共价官能化后,得到了功能化α-ZrP纳米粒子;Huang等[109]α-ZrP进行剥离后,使用原位聚合聚多巴胺对其功能化,并将其引入水性环氧树脂涂层中;Zhao等[107]也将聚吡咯改性剥离的α-ZrP引入水性环氧树脂涂层。上述功能化都是通过有机物结构中的氨基与酸化后的α-ZrP反应实现的,功能化后的α-ZrP纳米填料的分散性及所制备涂层的防腐能力均得到了显著提高。

2.2.2 MoS2

MoS2α-ZrP类似,由于其层间van der Waals力较弱、易被剥离为层状结构[110],且因其具有特殊的晶体结构 (单层MoS2由三个原子层构成:一层蜂窝状六边形排列的Mo夹在两层六边形排列的S之间,S和Mo原子之间通过共价键连接) 可实现良好的化学和热力学稳定性,有助于提高环氧复合涂层的防腐蚀能力[111]。Jing等[18]在聚多巴胺处理后的MoS2表面使用ZrO2进行改性,并使用γ-缩水甘油醚氧丙基三甲氧基硅烷对其进一步功能化,最后将合成的纳米粒子引入到环氧树脂中,发现该纳米粒子可显著提高涂层的力学性能和耐腐蚀性能。

3 新型纳米填料

3.1 MOFs材料

MOFs材料 (即有机金属骨架化合物,以金属离子为前驱体,有机化合物为配体) 作为一种特殊的纳米材料,近年来在储能、催化、电磁波屏蔽等方面受到了人们的广泛关注[112]

MOFs材料或改性后的MOFs材料中的活性基团 (羧基[36,113,114,115]或氨基[112,116]) 可以与涂料中的聚合物分子相互作用,因此比传统纳米材料具有更好的相容性。Wei等[113]通过溶剂热法合成了Cu-MOFs和Zn-MOFs,并使用十八烷基膦酸对其不饱和位点进行疏水化改性,将其加入到环氧树脂中,大大提高了环氧树脂防腐涂层的疏水能力。Liu等[115]通过聚乙二醇单宁酸 (PEG-TA) 作为外壳包裹ZIF-7金属有机框架制备纳米粒子,将其嵌入聚合物涂层中,增加了涂层的阻隔、腐蚀传感和自愈功能。Duan等[112]通过微乳液法合成了尺寸均匀的ZIF-8金属有机框架纳米材料,并通过其结构中的氨基与环氧基团反应,提高了其在涂层中的分散性并改善了涂层的防腐性能、抗拉强度和摩擦性能。

MOFs材料为具有三维多孔骨架的结晶化合物,可作为载体材料以可控的方式传递活性分子[115],实现涂层的pH响应功能。Cao等[36]使用六水合硝酸锌与对苯二甲酸制备了MOFs复合材料并用作纳米容器以装载苯并三唑,并在此基础上装载原硅酸四乙酯以形成在酸性或碱性条件下响应的薄膜,实现了pH响应功能,所得纳米粒子在树脂中具有良好的分散性,且提升了涂层使役寿命。Mohammadpour等[115]则是将苯并三唑 (BTA) 封装在Zn-BTC金属有机框架中,制备了具有pH响应功能的智能防腐纳米复合涂层,所得纳米粒子的具体结构及纳米粒子中可能存在的相互作用如图4所示。

图4

图4   BTA封装示意图和BTA@Zn-BTC MOF纳米粒子中可能的相互作用[115]

Fig.4   Schematic representation of the BTA encapsulation and the possible interactions in BTA@Zn-BTC MOF[115]


3.2 MXene材料

MXene是指化学式为Mn+1Xn Tx的过渡金属碳化物/氮化物,其中M是过渡金属、X是碳或氮、Tx是官能团,例如-O、-OH、-F,其中n=1~3[117,118]。MXene具有类似于石墨烯的二维结构,使涂层具备优异的阻隔性能,从而提高了涂层的防腐性能[119,120]。目前应用于环氧树脂防腐方面的MXene材料主要是Ti3C2与Ti3C2Tx纳米片材料。

Ti3C2纳米片作为颜填料掺入环氧树脂中制备涂层,其含量为0.5%的树脂涂层在3.5%NaCl溶液中浸泡4周后,电化学阻抗比纯环氧树脂提高了两个数量级[72]。为了提高Ti3C2与环氧树脂的相容性并进一步提高涂层的防腐能力[119],之后Ti3C2以改性后的形式使用。Li等[119]使用3-缩水甘油氧基丙基 (三甲氧基硅烷) 制备了环氧官能化的Ti3C2纳米片;Yan等[20]利用聚多巴胺的“桥”效应合成了具有包裹结构的持久耐磨的Ti3C2/石墨烯杂化物;Nie等[121]将Ti3C2杂化到γ-环氧丙氧基丙基三甲氧基硅烷薄膜中,由于Ti3C2的阻隔性能优异,涂层的防腐蚀性能显著提高。

Ti3C2Tx可以直接作为颜填料加入到环氧树脂涂层中[122],也可以通过电泳沉积方法使其定向排列以提高涂层的防腐蚀性能[123]。利用含胺基的化合物对Ti3C2Tx表面端基化改性是目前较常用的方法。Li等[124]使用L-半胱氨酸对Ti3C2Tx进行改性,所制备的水性环氧树脂复合涂层与空白水性环氧树脂涂层相比,在3.5%NaCl溶液中浸泡30 d后,在较低频率下仍能保持较高的阻抗模量 (1.21×109 Ω·cm2) 和较低的腐蚀速率 (7.95×10-6 μm/a)。同样,苯胺[125]、氨基硅烷[126]和聚乙烯亚胺[82]等也可用于Ti3C2Tx的功能化改性。除此之外,Chen等[118]通过丝素蛋白与Ti3C2Tx之间形成酯基对Ti3C2Tx进行改性,提高了防腐涂层中Ti3C2Tx的分散性。Ding等[127]通过碳点与Ti3C2Tx纳米片之间形成C-O-Ti键对其功能化改性,所得纳米粒子因其流动诱导性可制备具有取向性的层状结构,由此所得的涂层在25 μm的超薄厚度下阻抗模值较纯环氧树脂提高了四个数量级以上,且碳点有效抑制了涂层裂纹和局部损伤扩展,实现了涂层的防腐性与稳定耐久性。Zhao等[128]通过使用离子液体 (1-(3-氨基丙基)-3-甲基咪唑溴化物) 与Ti3C2Tx的非共价官能化作用制得改性离子液体@Ti3C2Tx纳米片,所制得的环氧涂层具有显著增强的防腐能力与离子液体引发的自愈能力。

4 总结与展望

纳米填料已成为提高环氧涂层耐蚀性和耐久性的重要材料,通过对涂层表面缺陷的填充及自修复功能,实现涂层表面完整性及持续性防腐功能。但纳米填料仍有以下几个问题需解决:

(1) 目前,对纳米填料的研究取得了一定进展,但大多局限于使用时掺量、粒径、分散性改性等方面,对其微观层面上与树脂基体或纳米填料之间的相互作用机制尚不清晰。

(2) 加入纳米填料的涂层其工业应用不同于实验室研究,对涂层的耐久性及不同环境的适应性提出挑战,实际应用时涉及到多种纳米填料的混合使用,对其机理的研究可对其改性提供方向。

(3) 目前关于纳米填料在环氧树脂防腐方面的应用一般只局限于填料的改性,与环氧树脂基体改性共同作用的研究较少。

(4) 随着资源与生态的可持续发展,绿色、环境友好型防腐填料必然是未来防腐填料的主流,如通过合理分子设计使用生物质材料进行防腐。

参考文献

Park S M, Shon M Y.

Effects of multi-walled carbon nano tubes on corrosion protection of zinc rich epoxy resin coating

[J]. J. Ind. Eng. Chem., 2015, 21: 1258

[本文引用: 1]

Zheng S L, Bellido-Aguilar D A, Hu J, et al.

Waterborne bio-based epoxy coatings for the corrosion protection of metallic substrates

[J]. Prog. Org. Coat., 2019, 136: 105265

[本文引用: 1]

Dagdag O, Hsissou R, El Harfi A, et al.

Fabrication of polymer based epoxy resin as effective anti-corrosive coating for steel: computational modeling reinforced experimental studies

[J]. Surf. Interf., 2020, 18: 100454

[本文引用: 1]

Ramezanzadeh B, Moghadam M H M, Shohani N, et al.

Effects of highly crystalline and conductive polyaniline/graphene oxide composites on the corrosion protection performance of a zinc-rich epoxy coating

[J]. Chem. Eng. J., 2017, 320: 363

DOI      URL     [本文引用: 1]

Zhu B F, Liu Z H, Liu J, et al.

Preparation of fluorinated/silanized polyacrylates amphiphilic polymers and their anticorrosion and antifouling performance

[J]. Prog. Org. Coat., 2020, 140: 105510

[本文引用: 1]

Yang X Y, Yang Y T, Lu X P, et al.

Research progress of corrosion inhibitor for Mg-alloy

[J]. J. Chin. Soc. Corros. Prot.. 2022, 42: 435

[本文引用: 1]

(杨欣宇, 杨云天, 卢小鹏 .

镁合金缓蚀剂研究进展

[J]. 中国腐蚀与防护学报, 2022, 42: 435)

[本文引用: 1]

Yin M, Hou L F, Wang Z W, et al.

Self-generating construction of applicable corrosion-resistant surface structure of magnesium alloy

[J]. Corros. Sci., 2021, 184: 109378

DOI      URL     [本文引用: 1]

Xie Y K, Liu W Q, Liang L Y, et al.

Enhancement of anticorrosion property and hydrophobicity of modified epoxy coatings with fluorinated polyacrylate

[J]. Colloids Surf., 2019, 579A: 123659

[本文引用: 1]

Auepattana-Aumrung K, Phakkeeree T, Crespy D.

Polymer-corrosion inhibitor conjugates as additives for anticorrosion application

[J]. Prog. Org. Coat., 2022, 163: 106639

[本文引用: 1]

Feghali E, Van De Pas D J, Parrott A J, et al.

Biobased epoxy thermoset polymers from depolymerized native hardwood lignin

[J]. ACS Macro Lett., 2020, 9: 1155

DOI      PMID      [本文引用: 1]

Biobased epoxy thermoset polymers were prepared from lignin hydrogenolysis oils produced from native hardwood lignin. Native lignin in and wood was reacted in situ under Pd-catalyzed mild hydrogenolysis conditions to give depolymerized lignin oils in yields up to 98 wt %. Reacting these lignin oils with epichlorohydrin produced biobased epoxy resins. Blending these resins with nonrenewable bisphenol A diglycidyl ether (BADGE) in different proportions, and curing with diethylenetriamine, produced a series of epoxy thermoset polymers with varying biobased content. Up to 67% of the BADGE could be replaced with hardwood lignin-derived epoxy resins while achieving superior or equivalent mechanical properties to the BADGE control polymer. Comparing the performance of lignin-based epoxy polymers from eucalyptus and pine wood provided insights into the advantages and disadvantages of using hardwood versus softwood native lignins in the quest for high performance biobased thermoset polymers.

Javidparvar A A, Naderi R, Ramezanzadeh B.

Epoxy-polyamide nanocomposite coating with graphene oxide as cerium nanocontainer generating effective dual active/barrier corrosion protection

[J]. Composites, 2019, 172B: 363

[本文引用: 1]

Liu X W, Xiong J P, Lv Y W, et al.

Study on corrosion electrochemical behavior of several different coating systems by EIS

[J]. Prog. Org. Coat., 2009, 64: 497

DOI      URL     [本文引用: 1]

Zmozinski A V, Peres R S, Freiberger K, et al.

Zinc tannate and magnesium tannate as anticorrosion pigments in epoxy paint formulations

[J]. Prog. Org. Coat., 2018, 121: 23

[本文引用: 1]

Liu S Y, Wang X W, Yin Q, et al.

A facile approach to fabricating graphene/waterborne epoxy coatings with dual functionalities of barrier and corrosion inhibitor

[J]. J. Mater. Sci. Technol., 2022, 112: 263

DOI      [本文引用: 1]

A facile and environmentally-friendly method is developed to prepare graphene/waterborne epoxy (WEP) composite coatings. The graphene nanosheets are produced with electrochemical-exfoliation in the solution containing surfactants, cetyl trimethyl ammonium bromide (CTAB) and sodium dodecyl sulfate (SDS). The nanosheets containing solution thus formed are subjected to a quick dialysis and then directly used as a diluent for WEP without any further treatment. This preparation method overcomes the commonly identified problems of aggregations and ‘corrosion promotion’ effect associated with graphene, and increases the impedance of the composite coatings by more than two orders of magnitude. The analysis of anticorrosion performance suggested that the presence of surfactants not only improves the dispersibility of graphene nanosheets but also endows the composite coatings with both barrier and corrosion inhibition capabilities. The strategy reported herein may pave the path to the large-scale production of graphene anticorrosion coatings.

Zheng Z Q, Xiao L L, Huang P, et al.

Polydopamine improved anticorrosion of graphene on copper: inhibiting galvanic corrosion and healing structure defects

[J]. Appl. Mater. Today, 2021, 24: 101069

[本文引用: 3]

Sun W, Wu T T, Wang L D, et al.

The role of graphene loading on the corrosion-promotion activity of graphene/epoxy nanocomposite coatings

[J]. Composites, 2019, 173B: 106916

[本文引用: 1]

Schriver M, Regan W, Gannett W J, et al.

Graphene as a long-term metal oxidation barrier: worse than nothing

[J]. ACS Nano, 2013, 7: 5763

DOI      PMID      [本文引用: 1]

Anticorrosion and antioxidation surface treatments such as paint or anodization are a foundational component in nearly all industries. Graphene, a single-atom-thick sheet of carbon with impressive impermeability to gases, seems to hold promise as an effective anticorrosion barrier, and recent work supports this hope. We perform a complete study of the short- and long-term performance of graphene coatings for Cu and Si substrates. Our work reveals that although graphene indeed offers effective short-term oxidation protection, over long time scales it promotes more extensive wet corrosion than that seen for an initially bare, unprotected Cu surface. This surprising result has important implications for future scientific studies and industrial applications. In addition to informing any future work on graphene as a protective coating, the results presented here have implications for graphene's performance in a wide range of applications.

Jing Y J, Wang P Q, Yang Q B, et al.

MoS2 decorated with ZrO2 nanoparticles through mussel-inspired chemistry of dopamine for reinforcing anticorrosion of epoxy coatings

[J]. Colloids Surf., 2021, 608A: 125625

[本文引用: 2]

Ding J H, Zhao H R, Zhou M, et al.

Super-anticorrosive inverse nacre-like graphene-epoxy composite coating

[J]. Carbon, 2021, 181: 204

DOI      URL     [本文引用: 1]

Yan H, Zhang L, Li H, et al.

Towards high-performance additive of Ti3C2/graphene hybrid with a novel wrapping structure in epoxy coating

[J]. Carbon, 2020, 157: 217

DOI      URL     [本文引用: 2]

Su Y, Qiu S H, Wei J Y, et al.

Sulfonated polyaniline assisted hierarchical assembly of graphene-LDH nanohybrid for enhanced anticorrosion performance of waterborne epoxy coatings

[J]. Chem. Eng. J., 2021, 426: 131269

DOI      URL     [本文引用: 1]

Sun W, Wang L D, Yang Z Q, et al.

A facile method for the modification of graphene nanosheets as promising anticorrosion pigments

[J]. Mater. Lett., 2018, 228: 152

DOI      URL     [本文引用: 1]

Qiu S H, Liu G, Li W, et al.

Noncovalent exfoliation of graphene and its multifunctional composite coating with enhanced anticorrosion and tribological performance

[J]. J. Alloy. Compd., 2018, 747: 60

DOI      URL     [本文引用: 1]

Shi H Y, Liu W Q, Xie Y K, et al.

Synthesis of carboxymethyl chitosan-functionalized graphene nanomaterial for anticorrosive reinforcement of waterborne epoxy coating

[J]. Carbohydr. Polym., 2021, 252: 117249

DOI      URL     [本文引用: 1]

Liu C B, Li J Y, Jin Z Y, et al.

Synthesis of graphene-epoxy nanocomposites with the capability to self-heal underwater for materials protection

[J]. Compos. Commun., 2019, 15: 155

DOI      URL     [本文引用: 1]

Ren F, Zhu G M, Ren P G, et al.

In situ polymerization of graphene oxide and cyanate ester–epoxy with enhanced mechanical and thermal properties

[J]. Appl. Surf. Sci., 2014, 316: 549

DOI      URL     [本文引用: 1]

Keshmiri N, Najmi P, Ramezanzadeh B, et al.

Nano-Scale P, Zn-codoped reduced-graphene oxide incorporated epoxy composite; synthesis, electronic-level DFT-D modeling, and anti-corrosion properties

[J]. Prog. Org. Coat., 2021, 159: 106416

[本文引用: 2]

Lv X D, Li X T, Li N, et al.

ZrO2 nanoparticle encapsulation of graphene microsheets for enhancing anticorrosion performance of epoxy coatings

[J]. Surf. Coat. Technol., 2019, 358: 443

DOI      URL     [本文引用: 2]

Zhang C Y, Li W, Liu C, et al.

Effect of covalent organic framework modified graphene oxide on anticorrosion and self-healing properties of epoxy resin coatings

[J]. J. Colloid Interface Sci., 2022, 608: 1025

DOI      URL     [本文引用: 3]

Li Z J, He Y, Yan S M, et al.

A novel silk fibroin-graphene oxide hybrid for reinforcing corrosion protection performance of waterborne epoxy coating

[J]. Colloids Surf., 2022, 634A: 127959

Zhu Q S, Li E, Liu X H, et al.

Synergistic effect of polypyrrole functionalized graphene oxide and zinc phosphate for enhanced anticorrosion performance of epoxy coatings

[J]. Composites, 2020, 130A: 105752

[本文引用: 1]

Wu H, Cheng L, Liu C B, et al.

Engineering the interface in graphene oxide/epoxy composites using bio-based epoxy-graphene oxide nanomaterial to achieve superior anticorrosion performance

[J]. J. Colloid Interface Sci., 2021, 587: 755

DOI      URL     [本文引用: 1]

Zhou S G, Wu Y M, Zhao W J, et al.

Designing reduced graphene oxide/zinc rich epoxy composite coatings for improving the anticorrosion performance of carbon steel substrate

[J]. Mater. Des., 2019, 169: 107694

DOI      URL     [本文引用: 1]

Chen G Y, Jin B, Li Y L, et al.

A smart healable anticorrosion coating with enhanced loading of benzotriazole enabled by ultra-highly exfoliated graphene and mussel-inspired chemistry

[J]. Carbon, 2022, 187: 439

DOI      URL     [本文引用: 4]

Yan D S, Liu J L, Zhang Z H, et al.

Dual-functional graphene oxide-based nanomaterial for enhancing the passive and active corrosion protection of epoxy coating

[J]. Composites, 2021, 222B: 109075

[本文引用: 1]

Cao K Y, Yu Z X, Yin D, et al.

Fabrication of BTA-MOF-TEOS-GO nanocomposite to endow coating systems with active inhibition and durable anticorrosion performances

[J]. Prog. Org. Coat., 2020, 143: 105629

[本文引用: 4]

Dhamodharan D, Dhinakaran V, Nagavaram R, et al.

Experimental and numerical study on smectic aligned zirconium phosphate decorated graphene oxide hybrids effects over waterborne epoxy multi-functional properties enhancement

[J]. J. Ind. Eng. Chem., 2022, 107: 165

DOI      URL     [本文引用: 2]

Kumar A M, Jose J, Hussein M A.

Novel polyaniline/chitosan/reduced graphene oxide ternary nanocomposites: feasible reinforcement in epoxy coatings on mild steel for corrosion protection

[J]. Prog. Org. Coat., 2022, 163: 106678

[本文引用: 1]

Nayak S R, Mohana K N, Hegde M B.

Anticorrosion performance of 4-fluoro phenol functionalized graphene oxide nanocomposite coating on mild steel

[J]. J. Fluorine Chem., 2019, 228: 109392

DOI      URL     [本文引用: 1]

Liu J H, Yu Q, Yu M, et al.

Silane modification of titanium dioxide-decorated graphene oxide nanocomposite for enhancing anticorrosion performance of epoxy coatings on AA-2024

[J]. J. Alloy. Compd., 2018, 744: 728

DOI      URL     [本文引用: 1]

Lin Y T, Don T M, Wong C J, et al.

Improvement of mechanical properties and anticorrosion performance of epoxy coatings by the introduction of polyaniline/graphene composite

[J]. Surf. Coat. Technol., 2019, 374: 1128

DOI      URL     [本文引用: 1]

Rajitha K, Mohana K N S.

Synthesis of graphene oxide-based nanofillers and their influence on the anticorrosion performance of epoxy coating in saline medium

[J]. Diamond Relat. Mater., 2020, 108: 107974

DOI      URL     [本文引用: 1]

Aghili M, Yazdi M K, Ranjbar Z, et al.

Anticorrosion performance of electro-deposited epoxy/ amine functionalized graphene oxide nanocomposite coatings

[J]. Corros. Sci., 2021, 179: 109143

DOI      URL     [本文引用: 1]

Ye Y W, Zhang D W, Liu T, et al.

Improvement of anticorrosion ability of epoxy matrix in simulate marine environment by filled with superhydrophobic POSS-GO nanosheets

[J]. J. Hazard. Mater., 2019, 364: 244

DOI      PMID      [本文引用: 1]

Super-hydrophobicity polyhedral oligomeric silsesquioxane-modified graphene oxide (POSS-GO) was synthesized by one-step reaction between graphene oxide (GO) and aminopropylisobutyl polyhedral oligomeric silsesquioxane (POSS-NH). Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) spectra indicated that the POSS were successfully connected to the edge and surface of GO nanosheets. Scanning probe microscope (SPM) and transmission electron microscope (TEM) images demonstrated that the POSS-GO with a thickness of 1.58 nm presented a stably dispersion in anhydrous ethanol. Results from electrochemical behaviors showed that the proper incorporation of POSS-GO could availably improve the anticorrosion ability of epoxy based coatings in simulate marine environment (3.5 wt% NaCl solution). The good dispersion of POSS-GO helped to fill the original defect and enhanced the complication of penetration path. The super-hydrophobicity of POSS-GO was beneficial to the reduction of actual contact zone. The synergistic effect of good dispersion and super-hydrophobicity promoted the enhancement of anticorrosion ability for composite coatings.Copyright © 2018. Published by Elsevier B.V.

Xue X Z, Zhang J Y, Zhou D, et al.

In-situ bonding technology and excellent anticorrosion activity of graphene oxide / hydroxyapatite nanocomposite pigment

[J]. Dyes Pigment., 2019, 160: 109

DOI      URL     [本文引用: 1]

Zhu X B, Zhao H C, Wang L P, et al.

Bioinspired ultrathin graphene nanosheets sandwiched between epoxy layers for high performance of anticorrosion coatings

[J]. Chem. Eng. J., 2021, 410: 128301

DOI      URL     [本文引用: 1]

Cen H Y, Cao J J, Chen Z Y.

Functionalized carbon nanotubes as a novel inhibitor to enhance the anticorrosion performance of carbon steel in CO2-saturated NaCl solution

[J]. Corros. Sci., 2020, 177: 109011

DOI      URL     [本文引用: 2]

Li J C, Chen P, Wang Y, et al.

Corrosion resistance of surface texturing epoxy resin coatings reinforced with fly ash cenospheres and multiwalled carbon nanotubes

[J]. Prog. Org. Coat., 2021, 158: 106388

[本文引用: 1]

Shen W N, Feng L J, Liu X, et al.

Multiwall carbon nanotubes-reinforced epoxy hybrid coatings with high electrical conductivity and corrosion resistance prepared via electrostatic spraying

[J]. Prog. Org. Coat., 2016, 90: 139

[本文引用: 1]

Rahmani P, Shojaei A, Tavandashti N P.

Nanodiamond loaded with corrosion inhibitor as efficient nanocarrier to improve anticorrosion behavior of epoxy coating

[J]. J. Ind. Eng. Chem., 2020, 83: 153

DOI      URL     [本文引用: 1]

Xia Y Q, Zhang N G, Zhou Z P, et al.

Incorporating SiO2 functionalized g-C3N4 sheets to enhance anticorrosion performance of waterborne epoxy

[J]. Prog. Org. Coat., 2020, 147: 105768

[本文引用: 1]

Steffi A P, Balaji R, Prakash N, et al.

Incorporation of SiO2 functionalized g-C3N4 sheets with TiO2 nanoparticles to enhance the anticorrosion performance of metal specimens in aggressive Cl- environment

[J]. Chemosphere, 2022, 290: 133332

DOI      URL    

Xia Y Q, He Y, Chen C L, et al.

Co-modification of polydopamine and KH560 on g-C3N4 nanosheets for enhancing the corrosion protection property of waterborne epoxy coating

[J]. React. Funct. Polym., 2020, 146: 104405

DOI      URL     [本文引用: 2]

Li S X, Du F F, Lin Y X, et al.

Excellent anti-corrosion performance of epoxy composite coatings filled with novel N-doped carbon nanodots

[J]. Eur. Polym. J., 2022, 163: 110957

DOI      URL     [本文引用: 1]

Li Z Y, Ravenni G, Bi H C, et al.

Effects of biochar nanoparticles on anticorrosive performance of zinc-rich epoxy coatings

[J]. Prog. Org. Coat., 2021, 158: 106351

[本文引用: 1]

Xia Y Q, He Y, Chen C L, et al.

MoS2 nanosheets modified SiO2 to enhance the anticorrosive and mechanical performance of epoxy coating

[J]. Prog. Org. Coat., 2019, 132: 316

[本文引用: 5]

Jia S S, Deng S L, Luo S, et al.

Texturing commercial epoxy with hierarchical and porous structure for robust superhydrophobic coatings

[J]. Appl. Surf. Sci., 2019, 466: 84

DOI      URL     [本文引用: 1]

Zhu B F, Ou R J, Liu J, et al.

Fabrication of superhydrophobic surfaces with hierarchical structure and their corrosion resistance and self-cleaning properties

[J]. Surf. Interfaces, 2022, 28: 101608

[本文引用: 1]

Cheng M, Jiang H, Wang Z K, et al.

Nanocatalyst-mediated oxygen depletion in epoxy coating for active corrosion protection

[J]. Chem. Eng. J., 2021, 425: 131649

DOI      URL     [本文引用: 1]

Wang T, Ge H Y, Zhang K L.

A novel core-shell silica@graphene straticulate structured antistatic anticorrosion composite coating

[J]. J. Alloy. Compd., 2018, 745: 705

DOI      URL     [本文引用: 1]

Chen X, Wen S F, Feng T, et al.

High solids organic-inorganic hybrid coatings based on silicone-epoxy-silica coating with improved anticorrosion performance for AA2024 protection

[J]. Prog. Org. Coat., 2020, 139: 105374

[本文引用: 1]

Atta A M, Mohamed N H, Rostom M, et al.

New hydrophobic silica nanoparticles capped with petroleum paraffin wax embedded in epoxy networks as multifunctional steel epoxy coatings

[J]. Prog. Org. Coat., 2019, 128: 99

[本文引用: 1]

Matin E, Attar M M, Ramezanzadeh B.

Investigation of corrosion protection properties of an epoxy nanocomposite loaded with polysiloxane surface modified nanosilica particles on the steel substrate

[J]. Prog. Org. Coat., 2015, 78: 395

[本文引用: 1]

Ghanbari A, Attar M M.

A study on the anticorrosion performance of epoxy nanocomposite coatings containing epoxy-silane treated nano-silica on mild steel substrate

[J]. J. Ind. Eng. Chem., 2015, 23: 145

DOI      URL     [本文引用: 1]

Yu H DGeng C DLiu C M, et al.

Near-infrared light photothermally induced shape memory and self-healing effects of epoxy resin coating with polyaniline nanofibers

[J]. Syn. Met., 2020, 226:116417

[本文引用: 1]

Hao Y S, Sun W, Jiang L L, et al.

Self-healing effect of epoxy coating containing mesoporous polyaniline hollow spheres loaded with benzotriazole

[J]. Prog. Org. Coat., 2021, 159: 106445

[本文引用: 1]

Lv Y Q, Zheng Y Q, Zhu H L, et al.

Designing a dual-functional material with barrier anti-corrosion and photocatalytic antifouling properties using g-C3N4 nanosheet with ZnO nanoring

[J]. J. Mater. Sci. Technol., 2022, 106: 56

DOI      URL     [本文引用: 1]

Wang H H, Zhang W J, Ma Y N, et al.

Phosphorylated polymer/anionic surfactant doped polypyrrole in waterborne epoxy matrix toward enhanced mechanical and chemical resistance

[J]. Prog. Org. Coat., 2020, 143: 105634

[本文引用: 1]

Liu T, Li J Y, Li X Y, et al.

Effect of self-assembled tetraaniline nanofiber on the anticorrosion performance of waterborne epoxy coating

[J]. Prog. Org. Coat., 2019, 128: 137

[本文引用: 1]

Ma I A W, Sh A, Ramesh K, et al.

Anticorrosion properties of epoxy-nanochitosan nanocomposite coating

[J]. Prog. Org. Coat., 2017, 113: 74

[本文引用: 1]

Cheng L, Liu C B, Wu H, et al.

A two-dimensional nanocontainer based on mesoporous polydopamine coated lamellar hydroxyapatite towards anticorrosion reinforcement of waterborne epoxy coatings

[J]. Corros. Sci., 2021, 193: 109891

DOI      URL     [本文引用: 2]

Yan H, Cai M, Wang J C, et al.

Insight into anticorrosion/antiwear behavior of inorganic-organic multilayer protection system composed of nitriding layer and epoxy coating with Ti3C2Tx MXene

[J]. Appl. Surf. Sci., 2021, 536: 147974

DOI      URL     [本文引用: 2]

Javidparvar A A, Naderi R, Ramezanzadeh B.

Manipulating graphene oxide nanocontainer with benzimidazole and cerium ions: application in epoxy-based nanocomposite for active corrosion protection

[J]. Corros. Sci., 2020, 165: 108379

DOI      URL     [本文引用: 1]

He Y, Zhang C L, Wu F, et al.

Fabrication study of a new anticorrosion coating based on supramolecular nanocontainer

[J]. Synth. Met., 2016, 212: 186

DOI      URL     [本文引用: 1]

Asaad M A, Raja P B, Huseien G F, et al.

Self-healing epoxy coating doped with Elaesis guineensis/silver nanoparticles: a robust corrosion inhibitor

[J]. Constr. Build. Mater., 2021, 312: 125396

DOI      URL     [本文引用: 1]

Udoh I I, Shi H W, Liu F C, et al.

Microcontainer-based waterborne epoxy coatings for AA2024-T3: Effect of nature and number of polyelectrolyte multilayers on active protection performance

[J]. Mater. Chem. Phys., 2020, 241: 122404

DOI      URL     [本文引用: 1]

Jin Z Y, Zhao Z L, Zhao T, et al.

One-step preparation of inhibitor-loaded nanocontainers and their application in self-healing coatings

[J]. Corros. Commun., 2021, 2: 63

DOI      URL     [本文引用: 1]

Yao Y C, Sun H, Zhang Y L, et al.

Corrosion protection of epoxy coatings containing 2-hydroxyphosphonocarboxylic acid doped polyaniline nanofibers

[J]. Prog. Org. Coat., 2020, 139: 105470

[本文引用: 1]

Liu T F, Li W, Zhang C Y, et al.

Preparation of highly efficient self-healing anticorrosion epoxy coating by integration of benzotriazole corrosion inhibitor loaded 2D-COF

[J]. J. Ind. Eng. Chem., 2021, 97: 560

DOI      URL     [本文引用: 2]

Zhang M L, Yu X, Lin Y N, et al.

Anti-corrosion coatings with active and passive protective performances based on v-COF/GO nanocontainers

[J]. Prog. Org. Coat., 2021, 159: 106415

[本文引用: 1]

Zhou C L, Li Z, Li J, et al.

Epoxy composite coating with excellent anticorrosion and self-healing performances based on multifunctional zeolitic imidazolate framework derived nanocontainers

[J]. Chem. Eng. J., 2020, 385: 123835

DOI      URL     [本文引用: 1]

Yan H, Fan X Q, Cai M, et al.

Amino-functionalized Ti3C2Tx loading ZIF-8 nanocontainer@benzotriazole as multifunctional composite filler towards self-healing epoxy coating

[J]. J. Colloid Interface Sci., 2021, 602: 131

DOI      URL     [本文引用: 2]

Cheng M, Li F T, Wang Z K, et al.

New valve-free organosilica nanocontainer for active anticorrosion of polymer coatings

[J]. Composites, 2021, 224B: 109185

[本文引用: 1]

Wang J X, Yang H, Meng Z, et al.

Epoxy coating with excellent anticorrosion and pH-responsive performances based on DEAEMA modified mesoporous silica nanomaterials

[J]. Colloids Surf., 2022, 634A: 127951

[本文引用: 1]

El-Faham A, Atta A M, Osman S M, et al.

Silver-embedded epoxy nanocomposites as organic coatings for steel

[J]. Prog. Org. Coat., 2018, 123: 209

[本文引用: 1]

Shen W N, Zhang T F, Ge Y F, et al.

Multifunctional AgO/epoxy nanocomposites with enhanced mechanical, anticorrosion and bactericidal properties

[J]. Prog. Org. Coat., 2021, 152: 106130

[本文引用: 1]

Radoman T S, Džunuzović J V, Grgur B N, et al.

Improvement of the epoxy coating properties by incorporation of polyaniline surface treated TiO2 nanoparticles previously modified with vitamin B6

[J]. Prog. Org. Coat., 2016, 99: 346

[本文引用: 2]

Pour Z S, Ghaemy M, Bordbar S, et al.

Effects of surface treatment of TiO2 nanoparticles on the adhesion and anticorrosion properties of the epoxy coating on mild steel using electrochemical technique

[J]. Prog. Org. Coat., 2018, 119: 99

[本文引用: 1]

Huang W F, Xiao Y L, Huang Z J, et al.

Super-hydrophobic polyaniline-TiO2 hierarchical nanocomposite as anticorrosion coating

[J]. Mater. Lett., 2020, 258: 126822

DOI      URL     [本文引用: 1]

Talebi H, Olad A, Nosrati R.

Fe3O4/PANI nanocomposite core-shell structure in epoxy resin matrix for the application as electromagnetic waves absorber

[J]. Prog. Org. Coat., 2022, 163: 106665

[本文引用: 1]

Hosseini M G, Sefidi P Y.

Electrochemical impedance spectroscopy evaluation on the protective properties of epoxy/DBSAdoped polyaniline-TiO2 nanocomposite coated mild steel under cathodic polarization

[J]. Surf. Coat. Technol., 2017, 331: 66

DOI      URL     [本文引用: 1]

Tavandashti N P, Almas S M, Esmaeilzadeh E.

Corrosion protection performance of epoxy coating containing alumina/PANI nanoparticles doped with cerium nitrate inhibitor on Al-2024 substrates

[J]. Prog. Org. Coat., 2021, 152: 106133

[本文引用: 1]

Yu M D, Fan C Q, Han S K, et al.

Anticorrosion behavior of superhydrophobic particles reinforced epoxy coatings for long-time in the high salinity liquid

[J]. Prog. Org. Coat., 2020, 147: 105867

[本文引用: 1]

Wu F, Li J F, Quan H, et al.

Robust polyurea/poly (urea-formalde-hyde) hybrid microcapsules decorated with Al2O3 nano-shell for improved self-healing performance

[J]. Appl. Surf. Sci., 2021, 542: 148561

DOI      URL     [本文引用: 1]

Zhang C, Chen L, He Y, et al.

Designing a high-performance waterborne epoxy coating with passive/active dual self-healing properties by synergistic effect of V2O5@polyaniline-tannic acid inhibitors

[J]. Prog. Org. Coat., 2021, 151: 106036

[本文引用: 1]

Kang Y T, Wang C C, Chen C Y.

Corrosion-protective performance of magnetic CoFe2O4/polyaniline nanocomposite within epoxy coatings

[J]. J. Taiwan Inst. Chem. Eng., 2021, 127: 357

DOI      URL     [本文引用: 1]

Situ Y, Ji W W, Liu C Y, et al.

Synergistic effect of homogeneously dispersed PANI-TiN nanocomposites towards long-term anticorrosive performance of epoxy coatings

[J]. Prog. Org. Coat., 2019, 130: 158

DOI      [本文引用: 1]

Novel polyaniline-titanium nitride (PANI-TiN) nanocomposites were synthesized by one step chemical oxidation polymerization at a low temperature and PANI-TiN/epoxy coatings with enhanced corrosion resistance were obtained based on the synergistic effect of TiN nanoparticles and PANI nanorods. PANI-TiN nanocomposites and resultant epoxy coatings were characterized by Scanning electron microscopy (SEM), Fourier transform infrared (FT-IR), Raman and X-ray photoelectron spectroscopy (XPS). Their anticorrosion performance in a 3.5 wt.% NaCl aqueous solution was investigated by the electrochemical impedance spectroscopy (EIS) and polarization curves. The results indicated that the corrosion resistance of PANI/epoxy coatings can be highly enhanced by introducing TiN nanoparticles to the PANI nanorods and the PANI-TiN/epoxy composite coating with 0.4 wt.% TiN (mass ratio to epoxy) exhibited the best corrosion protective performance, whose corrosion potential (E-corr = -0.338 V) was positively shifted by 0.235 V compared with pure epoxy matrix (E-corr = -0.573 V), and the corrosion current density was reduced by two orders of magnitude. The chemical structure of the rust layer and the anticorrosion mechanism were studied via X-ray diffraction analysis (XRD) and XPS. TiN nanoparticles showed a remarkably inhibiting effect on the agglomeration of PANI nanorods in epoxy coating. The corrosion resistance was attributed to the mixed mechanism of "passivation effect" of highly dispersed PANI and "labyrinth effect" of TiN nanoparticles.

Liu X R, Miao M, Zhang J Y, et al.

Surface coordination and excellent anticorrosion performance of strontiumapatite nanocomposite

[J]. J. Ind. Eng. Chem., 2019, 80: 656

DOI      URL     [本文引用: 1]

Hosseini M G, Aboutalebi K.

Improving the anticorrosive performance of epoxy coatings by embedding various percentages of unmodified and imidazole modified CeO2 nanoparticles

[J]. Prog. Org. Coat., 2018, 122: 56

[本文引用: 1]

Feng Z L, Wan R J, Chen S M, et al.

In-situ repair of marine coatings by a Fe3O4 nanoparticle-modified epoxy resin under seawater

[J]. Chem. Eng. J., 2022, 430: 132827

DOI      URL     [本文引用: 2]

Atta A M, El-Faham A, Al-Lohedan H A, et al.

Modified triazine decorated with Fe3O4 and Ag/Ag2O nanoparticles for self-healing of steel epoxy coatings in seawater

[J]. Prog. Org. Coat., 2018, 121: 247

[本文引用: 1]

El-Masry M M, Ramadan R, Ahmed M K.

The effect of adding cobalt ferrite nanoparticles on the mechanical properties of epoxy resin

[J]. Results Mater., 2020, 8: 100160

[本文引用: 1]

Soltani N, Salavati H, Moghadasi A.

The role of Na-montmorillonite/cobalt ferrite nanoparticles in the corrosion of epoxy coated AA 3105 aluminum alloy

[J]. Surf. Interfaces, 2019, 15: 89

DOI      [本文引用: 1]

The present findings support the significance of epoxy nanocomposites in the protection of AA3105 aluminum by Na-montmorillonite (Na-MMT)/CoFe2O4 nanopowder. In this work, crystalline CoFe2O4 nanoparticles and NaMMT/CoFe2O4 nanopowder were synthesized by using coprecipitation method and doping method, respectively. The structural properties of CoFe2O4, Na-MMT nanoparticles and Na-MMT/CoFe2O4 nanopowder were investigated by using X-ray diffraction (XRD) technique, ultraviolet-visible spectroscopy and Fourier transform infrared (FTIR) spectroscopy Therefore, the epoxy nanocomposite coatings, containing various amounts of NaMMT/CoFe2O4 nanoparticles were coated on the surface of an AA3105 aluminum specimen. The effects of addition of nanopowder on the resistance of the coating against corrosion of AA3105 aluminum in 3.5% NaCl solution were studied by electrochemical techniques (potentiodynamic polarization and electrochemical impedance spectroscopy (EIS)). Impedance and potentiodynamic polarization testing results, evidenced the improvement of the protection feature of the coatings against corrosion in the presence of the formulations with superior anticorrosion of EC80. The morphology and composition of the films were probed by FE-SEM and EDS.

Binyaseen A M, Bayazeed A, Al-Nami S Y, et al.

Development of epoxy/rice straw-based cellulose nanowhiskers composite smart coating immobilized with rare-earth doped aluminate: photoluminescence and anticorrosion properties for sustainability

[J]. Ceram. Int., 2022, 48: 4841

DOI      URL     [本文引用: 1]

Qiu S H, Su Y, Zhao H C, et al.

Ultrathin metal-organic framework nanosheets prepared via surfactant-assisted method and exhibition of enhanced anticorrosion for composite coatings

[J]. Corros. Sci., 2021, 178: 109090

DOI      URL     [本文引用: 1]

Arunadevi N, Swathika M, Mehala M, et al.

New epoxy-Nano metal oxide-based coatings for enhanced corrosion protection

[J]. J. Mol. Struct., 2022, 1250: 131790

DOI      URL     [本文引用: 1]

Zhao Y, Yan S M, He Y, et al.

Synthesis of ultrathin α-zirconium phosphate functionalized with polypyrrole for reinforcing the anticorrosive property of waterborne epoxy coating

[J]. Colloids Surf., 2022, 635A: 128052

[本文引用: 2]

Li M L, Huang H W, Mo R B, et al.

Single-step exfoliation, acidification and covalent functionalization of α-zirconium phosphate for enhanced anticorrosion of waterborne epoxy coatings

[J]. Surf. Interfaces, 2021, 23: 100887

[本文引用: 2]

Huang H W, Li M L, Tian Y Q, et al.

Exfoliation and functionalization of α-zirconium phosphate in one pot for waterborne epoxy coatings with enhanced anticorrosion performance

[J]. Prog. Org. Coat., 2020, 138: 105390

[本文引用: 1]

Haddadi S A, Amini M, Ghaderi S, et al.

Synthesis and cation-exchange behavior of expanded MoS2 nanosheets for anticorrosion applications

[J]. Mater. Today: Proc., 2018, 5: 15573

[本文引用: 1]

Gao F, Du A, Ma R N, et al.

Improved corrosion resistance of acrylic coatings prepared with modified MoS2 nanosheets

[J]. Colloids Surf., 2020, 587A: 124318

[本文引用: 1]

Duan S, Dou B J, Lin X Z, et al.

Influence of active nanofiller ZIF-8 metal-organic framework (MOF) by microemulsion method on anticorrosion of epoxy coatings

[J]. Colloids Surf., 2021, 624A: 126836

[本文引用: 3]

Wei R Z, Liu Z, Wei W C, et al.

Anticorrosion performance of hydrophobic acid-modified-MOFs/epoxy coatings

[J]. Colloid Interface Sci. Commun., 2022, 46: 100580

DOI      URL     [本文引用: 2]

Zhao H R, Liu Z, Cheng Z L.

Superior compatible interface and non-conductive two dimensional (2D) Co2(OH)2BDC nanosheets enabled the robust anti-corrosion and anti-friction performance epoxy coating system

[J]. Prog. Org. Coat., 2021, 154: 106181

[本文引用: 1]

Liu C B, Qian B, Hou P M, et al.

Stimulus responsive zeolitic imidazolate framework to achieve corrosion sensing and active protecting in polymeric coatings

[J]. ACS Appl. Mater. Interfaces, 2021, 13: 4429

DOI      URL     [本文引用: 6]

Mohammadpour Z, Zare H R.

Fabrication of a pH-sensitive epoxy nanocomposite coating based on a Zn-BTC metal-organic framework containing benzotriazole as a smart corrosion inhibitor

[J]. Cryst. Growth Des., 2021, 21: 3954

DOI      URL     [本文引用: 1]

Yan H, Li W, Li H, et al.

Ti3C2 MXene nanosheets toward high-performance corrosion inhibitor for epoxy coating

[J]. Prog. Org. Coat., 2019, 135: 156

[本文引用: 1]

Chen J F, Zhao W J.

Silk fibroin-Ti3C2TX hybrid nanofiller enhance corrosion protection for waterborne epoxy coatings under deep sea environment

[J]. Chem. Eng. J., 2021, 423: 130195

DOI      URL     [本文引用: 2]

Li X M, Zhou S X.

Epoxy-functionalized Ti3C2 nanosheet for epoxy coatings with prominent anticorrosion performance

[J]. Prog. Org. Coat., 2022, 162: 106559

[本文引用: 3]

Shen L, Zhao W J, Wang K, et al.

GO-Ti3C2 two-dimensional heterojunction nanomaterial for anticorrosion enhancement of epoxy zinc-rich coatings

[J]. J. Hazard. Mater., 2021, 417: 126048

DOI      URL     [本文引用: 1]

Nie Y, Huang J K, Ma S Y, et al.

MXene-hybridized silane films for metal anticorrosion and antibacterial applications

[J]. Appl. Surf. Sci., 2020, 527: 146915

DOI      URL     [本文引用: 1]

Zhao C C, Zhou M, Yu H B.

Interfacial combination of Ti3C2Tx MXene with waterborne epoxy anticorrosive coating

[J]. Appl. Surf. Sci., 2022, 572: 150894

DOI      URL     [本文引用: 1]

Fan X Q, Yan H, Cai M, et al.

Achieving parallelly-arranged Ti3C2Tx in epoxy coating for anti-corrosive/wear high-efficiency protection

[J]. Composites, 2022, 231B: 109581

[本文引用: 1]

Li S H, Huang H W, Chen F, et al.

Reinforced anticorrosion performance of waterborne epoxy coating with eco-friendly L-cysteine modified Ti3C2Tx MXene nanosheets

[J]. Prog. Org. Coat., 2021, 161: 106478

[本文引用: 1]

Cai M, Yan H, Li Y T, et al.

Ti3C2Tx/PANI composites with tunable conductivity towards anticorrosion application

[J]. Chem. Eng. J., 2021, 410: 128310

DOI      URL     [本文引用: 1]

Yan H, Cai M, Li W, et al.

Amino-functionalized Ti3C2Tx with anti-corrosive/wear function for waterborne epoxy coating

[J]. J. Mater. Sci. Technol., 2020, 54: 144

DOI      URL     [本文引用: 1]

Ding J H, Zhao H R, Yu H B.

Structure and performance insights in carbon dots-functionalized MXene-epoxy ultrathin anticorrosion coatings

[J]. Chem. Eng. J., 2022, 430: 132838

DOI      URL     [本文引用: 1]

Zhao H R, Ding J H, Zhou M, et al.

Air-stable titanium carbide MXene nanosheets for corrosion protection

[J]. ACS Appl. Nano Mater., 2021, 4: 3075

DOI      URL     [本文引用: 1]

/