Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (5): 597-604    DOI:
论文 Current Issue | Archive | Adv Search |
STUDY ON HIGH TEMPERATURE DEFORMATION CHARACTERISTICS OF Cu–0.23%Al2O3 DISPERSION–STRENGTHENED COPPER ALLOY
SHEN Kun 1; WANG Mingpu 1; GUO Mingxing 2; LI Shumei 1
1) School of Materials Science and Engineering; Central South University; Changsha 410083
2) Laboratory for Mechanical Metallurgy; Institut des Mat´eriaux; Ecole Polytechnique F´ed´erale de Lausanne (EPFL);
Lausanne; Switzerland
Cite this article: 

SHEN Kun WANG Mingpu GUO Mingxing LI Shumei . STUDY ON HIGH TEMPERATURE DEFORMATION CHARACTERISTICS OF Cu–0.23%Al2O3 DISPERSION–STRENGTHENED COPPER ALLOY. Acta Metall Sin, 2009, 45(5): 597-604.

Download:  PDF(1406KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In order to deeply understand the high temperature deformation behaviors of Cu–0.23%Al2O3 (volume fraction) alloy, the changes of flow stress and microstructure for this alloy after deformation at high temperatures were investigated by using the Gleeble–1500 hot simulator, metallographic microscope and transmission electron microscope. The results show that the flow stress will change significantly with the thermal compression conditions and is mainly divided into three different stages. In addition, the average activation energy and other material parameters of this alloy deformed at high temperatures were obtained, based on them, the constitutive equation of the peak value yield stress–strain rate–temperature was also established. With increasing of compression temperature, the size and number of dynamic recrystallization grains are increased. However in the case of isothermal compression, with increasing of strain rates, the evolution of metallographical microstructures becomes disequilibrium, the size of subgrain is gradually decreased to about 0.5—1 μm, and the dislocation density is increased at first, and then decreased.

Key words:  Cu–Al2O3 alloy      high temperature deformation      constitutive equation      dynamic recovery      dynamic recrystallization     
Received:  15 October 2008     
ZTFLH: 

TG111.7

 
  TG146.11

 
Fund: 

Supported by National High Technical Research and Development Program of China (Nos.2002AA302505 and 2006AA03Z517)

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I5/597

[1] Lee J, Kim Y C, Lee S, Ahn S H, Kim N J. Metall Mater Trans, 2004; 35A: 493
[2] Guo M X, Wang M P, Li Z, Cao L F, Cheng J Y. Mater Mech Eng, 2005; 29(4): 1
(郭明星, 汪明朴, 李周, 曹玲飞, 程建奕. 机械工程材料, 2005; 29(4): 1)
[3] Perez J E, Morris D G. Scr Metall Mater, 1994; 31: 231
[4] Shi Z Y, Wang D Q. J Mater Sci Lett, 1998; 17: 477
[5] Rajkovic V M, Mitkov M V. Int J Powder Metall, 2000; 36: 45
[6] Guo M X, Wang M P, Shen K, Cao L F, Li Z, Zhang Z. J Alloys Compd, 2008; 460: 585
[7] Poul B, Kapoor R, Chakrararty J K, Bidaye A C, Sharma I G, Suri A K. Scr Mater, 2009; 60: 104
[8] Guo M X, Wang M P, Cao L F, Lei R S. Mater Charact, 2007; 58: 928
[9] Jonas J J, Sellars C M, Tegart W J M. Strength and Structure Under Hot–Working Conditions. London: Iron and Steel Institute, 1968: 49
[10] Poirier J P, translated by Guan D L. Plastic Deformation of Crystal at High Temperature. Dalian: Dalian Science and Technology University Press, 1989: 11
(Poirier J P著, 关德林译. 晶体高温塑性变形. 大连: 大连理工大学出版社, 1989: 11)
[11] Broyles S E, Anderson K R, Groza J R, Gibeling J C. Metall Mater Trans, 1996; 27A: 1217

[1] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[2] WANG Kai, JIN Xi, JIAO Zhiming, QIAO Junwei. Mechanical Behaviors and Deformation Constitutive Equations of CrFeNi Medium-Entropy Alloys Under Tensile Conditions from 77 K to 1073 K[J]. 金属学报, 2023, 59(2): 277-288.
[3] LOU Feng, LIU Ke, LIU Jinxue, DONG Hanwu, LI Shubo, DU Wenbo. Microstructures and Formability of the As-Rolled Mg- xZn-0.5Er Alloy Sheets at Room Temperature[J]. 金属学报, 2023, 59(11): 1439-1447.
[4] WU Caihong, FENG Di, ZANG Qianhao, FAN Shichun, ZHANG Hao, LEE Yunsoo. Microstructure Evolution and Recrystallization Behavior During Hot Deformation of Spray Formed AlSiCuMg Alloy[J]. 金属学报, 2022, 58(7): 932-942.
[5] REN Shaofei, ZHANG Jianyang, ZHANG Xinfang, SUN Mingyue, XU Bin, CUI Chuanyong. Evolution of Interfacial Microstructure of Ni-Co Base Superalloy During Plastic Deformation Bonding and Its Bonding Mechanism[J]. 金属学报, 2022, 58(2): 129-140.
[6] JIANG Weining, WU Xiaolong, YANG Ping, GU Xinfu, XIE Qingge. Formation of Dynamic Recrystallization Zone and Characteristics of Shear Texture in Surface Layer of Hot-Rolled Silicon Steel[J]. 金属学报, 2022, 58(12): 1545-1556.
[7] NI Ke, YANG Yinhui, CAO Jianchun, WANG Liuhang, LIU Zehui, QIAN Hao. Softening Behavior of 18.7Cr-1.0Ni-5.8Mn-0.2N Low Nickel-Type Duplex Stainless Steel During Hot Compression Deformation Under Large Strain[J]. 金属学报, 2021, 57(2): 224-236.
[8] LIU Qingqi, LU Ye, ZHANG Yifei, FAN Xiaofeng, LI Rui, LIU Xingshuo, TONG Xue, YU Pengfei, LI Gong. Thermal Deformation Behavior of Al19.3Co15Cr15Ni50.7 High Entropy Alloy[J]. 金属学报, 2021, 57(10): 1299-1308.
[9] ZHAO Manman, QIN Sen, FENG Jie, DAI Yongjuan, GUO Dong. Effect of Al and Ni on Hot Deformation Behavior of 1Cr9Al(1~3)Ni(1~7)WVNbB Steel[J]. 金属学报, 2020, 56(7): 960-968.
[10] CHEN Wenxiong, HU Baojia, JIA Chunni, ZHENG Chengwu, LI Dianzhong. Post-Dynamic Softening of Austenite in a Ni-30%Fe Model Alloy After Hot Deformation[J]. 金属学报, 2020, 56(6): 874-884.
[11] ZHANG Yang, SHAO Jianbo, CHEN Tao, LIU Chuming, CHEN Zhiyong. Deformation Mechanism and Dynamic Recrystallization of Mg-5.6Gd-0.8Zn Alloy During Multi-Directional Forging[J]. 金属学报, 2020, 56(5): 723-735.
[12] WU Huajian, CHENG Renshan, LI Jingren, XIE Dongsheng, SONG Kai, PAN Hucheng, QIN Gaowu. Effect of Al Content on Microstructure and Mechanical Properties of Mg-Sn-Ca Alloy[J]. 金属学报, 2020, 56(10): 1423-1432.
[13] ZHANG Yong, LI Xinxu, WEI Kang, WAN Zhipeng, JIA Chonglin, WANG Tao, LI Zhao, SUN Yu, LIANG Hongyan. Hot Deformation Characteristics of Novel Wrought Superalloy GH4975 Extruded Rod Used for 850 ℃ Turbine Disc[J]. 金属学报, 2020, 56(10): 1401-1410.
[14] Xu LI,Qingbo YANG,Xiangze FAN,Yonglin GUO,Lin LIN,Zhiqing ZHANG. Influence of Deformation Parameters on Dynamic Recrystallization of 2195 Al-Li Alloy[J]. 金属学报, 2019, 55(6): 709-719.
[15] Yahui DENG,Yinhui YANG,Jianchun CAO,Hao QIAN. Research on Dynamic Recrystallization Behavior of 23Cr-2.2Ni-6.3Mn-0.26N Low Nickel TypeDuplex Stainless Steel[J]. 金属学报, 2019, 55(4): 445-456.
No Suggested Reading articles found!