Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (2): 173-177    DOI:
论文 Current Issue | Archive | Adv Search |
THERMALLY ACTIVATED DEFORMATION AND DYNAMIC STRAIN AGING OF Zr–4 ALLOY DURING STRESS RELAXATION
TAN Jun 1; LI Cong 2; SUN Chao 1; YING Shihao 1; LIAN Shanshan 3; KAN Xiwu 3; FENG Keqin 3
1. National Key Laboratory for Nuclear Fuel and Materials; Nuclear Power Institute of China; Chengdu 610041
2. State Nuclear Power Engineering Corp.; Ltd.; Shanghai 200233
3. School of Manufacture Science and Engineering; Sichuan University; Chengdu 610065
Cite this article: 

TAN Jun LI Cong SUN Chao YING Shihao LIAN Shanshan KAN Xiwu FENG Keqin. THERMALLY ACTIVATED DEFORMATION AND DYNAMIC STRAIN AGING OF Zr–4 ALLOY DURING STRESS RELAXATION. Acta Metall Sin, 2009, 45(2): 173-177.

Download:  PDF(774KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The thermally activated deformation and dynamic strain aging (DSA) of Zr–4 were investigated by stress relaxation experiments in a broad temperature range. It is found that in the process of stress relaxation, the plastic deformation rate of the alloy decreases with the relaxation
time, and this rate and the stress reduction ratio at the end of relaxation exhibit a minimum value at about 623 K. The activation volume associated with dislocation motion is found from the relationship between the stress and relaxation time. A noticeable maximum value appears around 623 K when the activation volume plotted against the temperature, which suggests that at this temperature, DSA is most pronounced. The strain ependence of the activation volume is analyzed. The rate controlling deformation mechanism is identified as the overcoming of solute atoms by dislocations, and the dislocation density is found to have an influence on DSA.

Key words:  Zr--4 alloy      stress relaxation      thermally activated deformation      dynamic strain      aging     
Received:  12 May 2008     
ZTFLH: 

TG111.7

 
Fund: 

Supported by National Natural Science Foundation of China (No.50601024)

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I2/173

[1] Lee M H, Kim J H, Choi B K, Jeong Y H. J Alloys Compd,2007; 428: 99
[2] Ahn J S, Nam S W. Mater Lett, 1990; 9: 413
[3] Lee K W, Kim S K, Kim K T, Hong S I. J Nucl Mater,2001; 295: 21
[4] Thorpe W R, Smith I O. J Nucl Mater, 1978; 78: 49
[5] Armas A F, Alvarez I A, Moscato G. Scr Mater, 1996; 34:281
[6] Nemat–Nasser S, Li Y L. Acta Mater, 1998; 46: 565
[7] Zhang J S. Strength of Materials. Harbin: Harbin Insti-tute of Technology Press, 2004: 52
张俊善. 材料强度学. 哈尔滨: 哈尔滨工业大学出版社, 2004: 52)
[8] Guo Y B, Tang Z P, Cheng J Y. Acta Mech Solida Sin,2002; 23: 249
(郭扬波, 唐志平, 程经毅. 固体力学学报, 2002; 23: 249)
[9] Kocks U F, Argon A S, Ashby M F. Prog Mater Sci, 1975;19: 112
[10] Regazzoni G, Kocks U F, Follansbee P S. Acta Metall, 1987; 35: 2865
[11] Soo P, Higgins G T. Acta Metall, 1968; 16: 177
[12] Hong S I, Ryu W S, Rim C S. J Nucl Mater, 1984; 120: 1
[13] Schoeck G. Phys Status Solidi, 1965; 8: 499
[14] Evans A G, Rawlings R D. Phys Status Solidi, 1969; 34: 9

[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] LIANG Kai, YAO Zhihao, XIE Xishan, YAO Kaijun, DONG Jianxin. Correlation Between Microstructure and Properties of New Heat-Resistant Alloy SP2215[J]. 金属学报, 2023, 59(6): 797-811.
[3] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
[4] WANG Bin, NIU Mengchao, WANG Wei, JIANG Tao, LUAN Junhua, YANG Ke. Microstructure and Strength-Toughness of a Cu-Contained Maraging Stainless Steel[J]. 金属学报, 2023, 59(5): 636-646.
[5] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[6] MA Guonan, ZHU Shize, WANG Dong, XIAO Bolv, MA Zongyi. Aging Behaviors and Mechanical Properties of SiC/Al-Zn-Mg-Cu Composites[J]. 金属学报, 2023, 59(12): 1655-1664.
[7] GONG Xiangpeng, WU Cuilan, LUO Shifang, SHEN Ruohan, YAN Jun. Effect of Natural Aging on Artificial Aging of an Al-2.95Cu-1.55Li-0.57Mg-0.18Zr Alloy at 160oC[J]. 金属学报, 2023, 59(11): 1428-1438.
[8] GENG Yaoxiang, TANG Hao, XU Junhua, ZHANG Zhijie, YU Lihua, JU Hongbo, JIANG Le, JIAN Jianglin. Formability and Mechanical Properties of High-Strength Al-(Mn, Mg)-(Sc, Zr) Alloy Produced by Selective Laser Melting[J]. 金属学报, 2022, 58(8): 1044-1054.
[9] REN Ping, CHEN Xingpin, WANG Cunyu, YU Feng, CAO Wenquan. Effects of Pre-Strain and Two-Step Aging on Microstructure and Mechanical Properties of Fe-30Mn-11Al-1.2C Austenitic Low-Density Steel[J]. 金属学报, 2022, 58(6): 771-780.
[10] GAO Chuan, DENG Yunlai, WANG Fengquan, GUO Xiaobin. Effect of Creep Aging on Mechanical Properties of Under-Aged 7075 Aluminum Alloy[J]. 金属学报, 2022, 58(6): 746-759.
[11] CHEN Shenghu, RONG Lijian. Oxide Scale Formation on Ultrafine-Grained Ferritic-Martensitic Steel During Pre-Oxidation and Its Effect on the Corrosion Performance in Stagnant Liquid Pb-Bi Eutectic[J]. 金属学报, 2021, 57(8): 989-999.
[12] ZHOU Hongyu, RAN Minrui, LI Yaqiang, ZHANG Weidong, LIU Junyou, ZHENG Wenyue. Effect of Diamond Particle Size on the Thermal Properties of Diamond/Al Composites for Packaging Substrate[J]. 金属学报, 2021, 57(7): 937-947.
[13] ZHU Shize, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. Influence of Cu Content on the Negative Effect of Natural Aging in SiC/Al-Mg-Si-Cu Composites[J]. 金属学报, 2021, 57(7): 928-936.
[14] CHEN Junzhou, LV Liangxing, ZHEN Liang, DAI Shenglong. Precipitation Strengthening Model of AA 7055 Aluminium Alloy[J]. 金属学报, 2021, 57(3): 353-362.
[15] ZHANG Le,WANG Wei,M. Babar Shahzad,SHAN Yiyin,YANG Ke. Fabrication and Properties of Novel Multi-LayeredMetal Composites[J]. 金属学报, 2020, 56(3): 351-360.
No Suggested Reading articles found!