Please wait a minute...
Acta Metall Sin  2005, Vol. 41 Issue (7): 775-779     DOI:
Research Articles Current Issue | Archive | Adv Search |
Measurement of Mechanical Properties of Sn--Ag--Cu Bulk Solder BGA Solder Joint Using Nanoindentation
WANG Fengjiang; QIAN Yiyu; MA Xin
State Key Laboratory of Advanced Welding Production Technology; Harbin Institute of Technology; Harbin 15000
Download:  PDF(230KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Berkovich nanoindentation tests with different loading rates have been performed on the Sn--3.0Ag--0.5Cu bulk solder and Sn--4.0Ag--0.5Cu lead--free ball grid array (BGA) solder joint. The load--depth curves are rate dependent. The Young's modulus of bulk solder and BGA joint obtained from load--depth curves with Oliver--Pharr method are 9.3 and 20 GPa respectively. The creep rate sensitivity of bulk solder and BGA joint obtained from curves with the concept of “work of indentation” are 0.1111 and 0.0574 respectively. The mechanical properties of Sn--Ag--Cu lead-free solder are typically size dependent.
Key words:  Sn--Ag--Cu      nanoindentation      Young's modulus      
Received:  22 February 2005     
ZTFLH:  TG113  
  TG115  
Corresponding Authors:  WANG Fengjiang     E-mail:  wangfj@hit.edu.cn

Cite this article: 

WANG Fengjiang; QIAN Yiyu; MA Xin. Measurement of Mechanical Properties of Sn--Ag--Cu Bulk Solder BGA Solder Joint Using Nanoindentation. Acta Metall Sin, 2005, 41(7): 775-779 .

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2005/V41/I7/775

[1] Manson S S. Thermal Stress and Low-Cycle Fatigue. New York: Mcgraw-Hill, 1966
[2] Villain J, Brueller O S, Qasim T. Sens Actuators, 2002; 99A: 194
[3] Wiese S, Feustel F, Meusel E. Sens Actuators, 2002; 99A: 188
[4] Wiese S, Schubert A, Walter H, Dudek R, Feustel F, Meusel E, Michel B. In: Proceedings IEEE 51th Electronic Components and Technology Conference, Orlando: IEEE, 2001: 890
[5] Oliver W C, Pharr G M. J Mater Res, 1992; 7: 1564
[6] Suresh S, Giannakopoulos A E. Acta Mater, 1998; 46: 5755
[7] Giannakopoulos A E, Suresh S. Scr Mater, 1999; 40: 1191
[8] Fujiwara M, Otsuka M. Mater Sci Eng, 2001; A319-321: 929
[9] Ma X, Yoshida F. Appl Phys Lett, 2003; 82: 188
[10] Zeng K, Tu K N. Mater Sci Eng Rep, 2002; 38: 55
[11] JIS Z 3198. Test Methods for Lead-Free Solders, Japanese Industrial Standard, 2003
[12] Stiwell N A, Tabor D. Prog Phys Soc, 1961; 78: 169
[13] Johnson K L. J Mech Phys Solids, 1970; 18: 115
[14] Pao Y H, Badgley S, Govila R, Jih E. Mater Res Soc Symp Proc, 1994; 323: 128
[1] ZHU Bin, YANG Lan, LIU Yong, ZHANG Yisheng. Micromechanical Properties of Duplex Microstructure of Martensite/Bainite in Hot Stamping via the Reverse Algorithms in Instrumented Sharp Indentation[J]. 金属学报, 2022, 58(2): 155-164.
[2] LAN Liangyun, KONG Xiangwei, QIU Chunlin, DU Linxiu. A Review of Recent Advance on Hydrogen Embrittlement Phenomenon Based on Multiscale Mechanical Experiments[J]. 金属学报, 2021, 57(7): 845-859.
[3] SUN Xiaojun, HE Jie, CHEN Bin, ZHAO Jiuzhou, JIANG Hongxiang, ZHANG Lili, HAO Hongri. Effect of Fe Content on the Microstructure, Electrical Resistivity, and Nanoindentation Behavior of Zr60Cu40-xFex Phase-Separated Metallic Glasses[J]. 金属学报, 2021, 57(5): 675-683.
[4] LIU Jizhao, HUANG Hefei, ZHU Zhenbo, LIU Awen, LI Yan. Numerical Simulation of Nanohardness in Hastelloy N Alloy After Xenon Ion Irradiation[J]. 金属学报, 2020, 56(5): 753-759.
[5] Sensen HUANG,Yingjie MA,Shilin ZHANG,Min QI,Jiafeng LEI,Yaping ZONG,Rui YANG. Influence of Alloying Elements Partitioning Behaviors on the Microstructure and Mechanical Propertiesin α+β Titanium Alloy[J]. 金属学报, 2019, 55(6): 741-750.
[6] Pengyue ZHAO, Yongbo GUO, Qingshun BAI, Feihu ZHANG. Research of Surface Defects of Polycrystalline Copper Nanoindentation Based on Microstructures[J]. 金属学报, 2018, 54(7): 1051-1058.
[7] Hongyang XU,Haibo KE,Huogen HUANG,Pei ZHANG,Pengguo ZHANG,Tianwei LIU. Nanoindentation Creep Behavior of U65Fe30Al5 Amorphous Alloy[J]. 金属学报, 2017, 53(7): 817-823.
[8] Jihou LIU,Hongyun ZHAO,Zhuolin LI,Xiaoguo SONG,Hongjie DONG,Yixuan ZHAO,Jicai FENG. Microstructures and Mechanical Properties of Cu/Sn/Cu Structure Ultrasonic-TLP Joint[J]. 金属学报, 2017, 53(2): 227-232.
[9] Biao YANG,Bailin ZHENG,Xingjian HU,Pengfei HE,Zhufeng YUE. EFFECT OF VOID ON NANOINDENTATION PROCESS OF Ni-BASED SINGLE CRYSTAL ALLOY[J]. 金属学报, 2016, 52(2): 129-134.
[10] XU Yang, SUN Mingxue, ZHOU Yanlei, LIU Zhenyu. PRECIPITATION BEHAVIOR OF (Nb, Ti)C IN COILING PROCESS AND ITS EFFECT ON MICRO-MECHANICAL CHARACTERISTICS OF FERRITE[J]. 金属学报, 2015, 51(1): 31-39.
[11] QIN Fei, XIANG Min, WU Wei. THE STRESS-STRAIN RELATIONSHIP OF TSV-Cu DETERMINED BY NANOINDENTATION[J]. 金属学报, 2014, 50(6): 722-726.
[12] CHENG Yuhao ZHANG Yuefei MAO Shengcheng HAN Xiaodong ZHANG Ze. EFFECT OF TEMPERATURE ON MICROSTRUCTURE AND NANOINDENTATION MECHANICAL PROPERTIES OF ELECTRODEPOSITED NANO-TWINNED Ni[J]. 金属学报, 2012, 48(11): 1342-1348.
[13] LI Yesheng WANG Wei. MEASUREMENTS OF HARDNESS AND ELASTIC MODULUS OF Cu THIN FILM BY MEANS OF NANOINDENTATION[J]. 金属学报, 2010, 46(9): 1098-1102.
[14] XIE Jijia HONG Youshi. EXPERIMENTAL INVESTIGATION ON FATIGUE BEHAVIOR OF NANOCRYSTALLINE NICKEL[J]. 金属学报, 2009, 45(7): 844-848.
[15] LI Junwan NI Yushan LIN Yihan LUO Cheng JIANG Wugui. MULTISCALE SIMULATION OF NANOINDENTATION ON Al THIN FILM[J]. 金属学报, 2009, 45(2): 129-136.
No Suggested Reading articles found!