Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2025, Vol. 45 Issue (6): 1599-1609    DOI: 10.11902/1005.4537.2025.060
Current Issue | Archive | Adv Search |
Influence of Cathodic Polarization on Hydrogen Embrittlement Susceptibility of 10CrNi5MoV Steel in Simulated Shallow-sea and Deep-sea Environment
XIANG Qifeng, ZHAO Yang(), ZHANG Tao, WANG Fuhui
State Key Laboratory of Digital Steel, Northeastern University, Shenyang 110819, China
Cite this article: 

XIANG Qifeng, ZHAO Yang, ZHANG Tao, WANG Fuhui. Influence of Cathodic Polarization on Hydrogen Embrittlement Susceptibility of 10CrNi5MoV Steel in Simulated Shallow-sea and Deep-sea Environment. Journal of Chinese Society for Corrosion and protection, 2025, 45(6): 1599-1609.

Download:  HTML  PDF(19169KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

10CrNi5MoV low-alloy high-strength steel may experience severe hydrogen embrittlement in deep-sea environment, while subjected to stress and cathodic protection. Hence, the hydrogen embrittlement susceptibility of 10CrNi5MoV high-strength steel in the simulated shallow sea (0 m) and deep sea (1000 m) environments by applied polarization potentials was assessed via potentiostat, electrochemical impedance spectroscopy (EIS), slow strain rate tensile (SSRT) and scanning electron microscopy (SEM). With the applied cathodic polarization potential negatively dropped from open circuit potential to -1050 mV, the hydrogen embrittlement susceptibility coefficient of the steel is about 25% in the shallow sea environment. However, which in the deep-sea environment reaches 59.7%. Although the corrosion and hydrogen evolution reactions are suppressed to certain extent in the deep-sea environment, whereas the diffusion of hydrogen atoms inwards the material is promoted, therewith the hydrogen embrittlement susceptibility of the steel is enhanced under cathodic protection.

Key words:  10CrNi5MoV steel      deep-sea environment      cathodic polarization      hydrogen embrittlement susceptibility      slow strain rate tensile     
Received:  23 February 2025      32134.14.1005.4537.2025.060
ZTFLH:  TG174  
Corresponding Authors:  ZHAO Yang, E-mail: zhaoyang7402@mail.neu.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2025.060     OR     https://www.jcscp.org/EN/Y2025/V45/I6/1599

Fig.1  Schematics of low temperature high pressure SSRT electrochemical system (1-gas inlet, 2- pressure meter, 3-thermocouple, 4- loading rod, 5- counter electrode,6- reference electrode)
Fig.2  Dimension (a) and pretreatment (b) of tensile specimen for SSRT (1- Al2O3 ceramics packing, 2- silicone, 3- working electrode)
Fig.3  Microstructure of the as-received 10CrNi5MoV steel (a) SEM image of secondary electron, (b) optical morphology of metallographic structure
Fig.4  Cathode polarization curves of 10CrNi5MoV steel in simulated shallow-sea and deep-sea environments
Fig.5  Nyquist (a, c) and Bode (b, d) plots of 10CrNi5-MoV steel at OCP and different cathodic polarization potentials in the simulated shallow-sea (a, b) and deep-sea (c, d) environment
Fig.6  Equivalent circuit for EIS date at OCP and different cathodic polarization potentials: (a) OCP, -850, -950 mV; (b) -1050 mV
EnvironmentPotential / mVRs / Ω·cm2Qf / 10-3 F·cm-2n1Rf / Ω·cm2Qdl / 10-3 F·cm-2n2Rt / Ω·cm2
Shallow-sea (0 m)OCP6.1422.6250.8766.0365.1470.8942310
-8506.1821.9370.8855.7342.2650.89525690
-9506.2512.9000.8263.071.4340.8609890
-10506.884---5.9120.7231140
EnvironmentPotential / mVRs / Ω·cm2Qf / 10-4 F·cm-2n1Rf / Ω·cm2Qdl / 10-3 F·cm-2n2Rt / 104 Ω·cm2
Deep-sea (1000 m)OCP1.1261.6310.84928.262.1740.89315530
-85010.183.1220.85126.452.1390.91922790
-95013.984.4580.7516.767.2320.87817760
-105011.32---5.1750.7472320
Table 1  Fitting parameters of EIS date of 10CrNi5MoV steel at different cathodic polarization potentials in the shallow- and deep-sea environment
Fig.7  Charge transfer resistance (Rt) of 10CrNi5MoV steel in the simulated deep-sea environment at different potentials
Fig.8  Stress-strain curves of 10CrNi5MoV steel at OCP and different cathodic polarization potentials in the shallow-sea (a) and deep-sea (b) environment
Fig.9  Hydrogen embrittlement sensitivity of 10CrNi5MoV steel at OCP and different cathodic polarization potentials in the shallow-sea (a) and deep-sea (b) environment
Fig.10  Fracture surface morphologies of 10CrNi5MoV steel after SSRT test at OCP (a1, b1) and -850 mV (a2, b2), -950 mV (a3, b3), -1050 mV (a4, b4) cathodic polarization potentials in the shallow-sea environment
Fig.11  Fracture surface morphologies of 10CrNi5MoV steel after SSRT test at OCP (a1, b1) and -850 mV (a2, b2), -950 mV (a3, b3), -1050 mV (a4, b4) cathodic polarization potentials in the deep-sea environment
Fig.12  Side surface morphologies of 10CrNi5MoV steel after SSRT test at OCP (a) and -850 mV (b), -950 mV (c), -1050 mV (d) cathodic polarization potentials in the shallow-sea environment
Fig.13  Side surface morphologies of 10CrNi5MoV steel after SSRT test at OCP (a) and -850 mV (b), -950 mV (c), -1050 mV (d) cathodic polarization potentials in the deep-sea environment
Fig.14  Schematic diagram of the crack propagation of 10CrNi5MoV steel at cathodic polarization in the simulated shallow-sea environment
Fig.15  Schematic diagram of the crack propagation of 10CrNi5MoV steel at cathodic polarization in the simulated deep-sea environment
[1] Wang X L, Yu Q, Wang Y. Research status of deep sea materials and corrosion protection technology [J]. Total Corros. Control, 2018, 32(10): 80
(王勋龙, 于 青, 王 燕. 深海材料及腐蚀防护技术研究现状 [J]. 全面腐蚀控制, 2018, 32(10): 80)
[2] Duan T G, Peng W S, Ding K K, et al. Long-term field exposure corrosion behavior investigation of 316L stainless steel in the deep sea environment [J]. Ocean Eng., 2019, 189: 106405
[3] Chen S, Hartt W, Wolfson S. Deep water cathodic protection: Part 2—Field deployment results [J]. Corrosion, 2003, 59: 721
[4] Hou B R, Zhang D, Wang P. Marine corrosion and protection: Current status and prospect [J]. Bull. Chin. Acad. Sci., 2016, 31: 1326
(侯保荣, 张 盾, 王 鹏. 海洋腐蚀防护的现状与未来 [J]. 中国科学院院刊, 2016, 31: 1326)
[5] Hao W K, Liu Z Y, Wang X Z, et al. Present situation and prospect of studies on high strength steel and corrosion resistance in naval ship and submarine [J]. Equip. Environ. Eng., 2014, 11(1): 54
(郝文魁, 刘智勇, 王显宗 等. 舰艇用高强钢强度及其耐蚀性现状及发展趋势 [J]. 装备环境工程, 2014, 11(1): 54)
[6] Yang Y G, Zhang T, Shao Y W, et al. Effect of hydrostatic pressure on the corrosion behaviour of Ni-Cr-Mo-V high strength steel [J]. Corros. Sci., 2010, 52: 2697
[7] Peng W S, Duan T G, Hou J, et al. Electrochemical corrosion behavior of high strength steel in simulated deep-sea environment under different hydrostatic pressure [J]. J. Mater. Res. Technol., 2023, 23: 2301
[8] Sun J Y, Peng W S, Xing S H. Combined effect of stress and dissolved oxygen on corrosion behavior of Ni-Cr-Mo-V high strength steel [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 755
(孙佳钰, 彭文山, 邢少华. 应力-溶解氧耦合对Ni-Cr-Mo-V高强钢腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2024, 44: 755)
[9] Liu R, Song Y S, Cui Y, et al. Corrosion of high-strength steel in 3.5%NaCl solution under hydrostatic pressure: understanding electrochemical corrosion with tensile stress coupling [J]. Corros. Sci., 2023, 219: 111204
[10] Xu H B, Li L, Peng L N, et al. Effect of the calcareous deposits on the stress corrosion cracking behavior of 10Ni5CrMoV high strength steel in deep-sea environment [J]. Int. J. Electrochem. Sci., 2021, 16: 210536
[11] Barbalat M, Lanarde L, Caron D, et al. Electrochemical study of the corrosion rate of carbon steel in soil: Evolution with time and determination of residual corrosion rates under cathodic protection [J]. Corros. Sci., 2012, 55: 246
[12] Novak P, Yuan R, Somerday B P, et al. A statistical, physical-based, micro-mechanical model of hydrogen-induced intergranular fracture in steel [J]. J. Mech. Phys. Solids, 2010, 58: 206
[13] Moro I, Briottet L, Lemoine P, et al. Hydrogen embrittlement susceptibility of a high strength steel X80 [J]. Mater. Sci. Eng., 2010, 527A: 7252
[14] Zhao T L, Wang S Q, Liu Z Y, et al. Effect of cathodic polarisation on stress corrosion cracking behaviour of a Ni(Fe, Al)-maraging steel in artificial seawater [J]. Corros. Sci., 2021, 179: 109176
[15] Chang E, Yan Y G, Li Q F, et al. Effects of cathodic polarization on the hydrogen embrittlement sensitivity of 921A steel in sea water [J]. J. Chin. Soc. Corr. Prot., 2010, 30: 83
(常 娥, 闫永贵, 李庆芬 等. 阴极极化对921A钢海水中氢脆敏感性的影响 [J]. 中国腐蚀与防护学报, 2010, 30: 83)
[16] Yang Z Y, Yan Y G, Ma L, et al. Effect of cathodic polarization on the susceptibility to hydrogen embrittlement of 907 steel [J]. Corros. Prot., 2009, 30: 701
(杨兆艳, 闫永贵, 马 力 等. 阴极极化对907钢氢脆敏感性的影响 [J]. 腐蚀与防护, 2009, 30: 701)
[17] Yang W P. Study on cathodic protection potential of high strength steel in seawater [J]. Dev. Appl. Mater., 2020, 35(4): 24
(杨文平. 高强度钢在海水环境中合理阴极保护电位研究 [J]. 材料开发与应用, 2020, 35(4): 24)
[18] Zhou Y, Zhang H B, Du M, et al. Effect of cathodic potentials on hydrogen embrittlement of 1000 MPa grade high strength steel in simulated deep-sea environment [J]. J. Chin. Soc. Corros. Prot., 2020, 40: 409
(周 宇, 张海兵, 杜 敏 等. 模拟深海环境中阴极极化对1000 MPa级高强钢氢脆敏感性的影响 [J]. 中国腐蚀与防护学报, 2020, 40: 409)
[19] Wang X H, Wang C, Tang X H, et al. Study on cathodic protection parameters of X100 steel in three types of simulated soil solutions [J]. Int. J. Electrochem. Sci., 2014, 9: 7660
[20] Chen Y C, Wang X H, Li Y C, et al. Electrochemical impedance spectroscopy study for cathodic disbonding test technology on three layer polyethylene anticorrosive coating under full immersion and alternating dry-wet environments [J]. Int. J. Electrochem. Sci., 2016, 11: 10884
[21] Cao C N. On the impedance plane displays for irreversible electrode reactions based on the stability conditions of the steady-state—I. One state variable besides electrode potential [J]. Electrochim. Acta, 1990, 35: 831
[22] Zhao R R, Xu L K, Xin Y L, et al. Influence of cathodic polarization on stress corrosion cracking susceptibility of 35CrMo steel for high strength bolt in simulated deep-sea environment [J]. Corros. Sci., 2024, 233: 112079
[23] Zheng Q B, Zhang L Y, Jie X H, et al. Effect of rotating speed and hydrostatic pressure on erosion-corrosion behavior of X65 pipeline steel [J]. Int. J. Electrochem. Sci., 2017, 12: 2593
[24] Cui T M, Dong H Y, Xu X H, et al. Hydrogen-enhanced oxidation of ferrite phase in stainless steel cladding and the contribution to stress corrosion cracking in deaerated high temperature water [J]. J. Nucl. Mater., 2021, 557: 153209
[25] Lynch S. Discussion of some recent literature on hydrogen-embrittlement mechanisms: addressing common misunderstandings [J]. Corros. Rev., 2019, 37: 377
[26] Venezuela J, Zhou Q J, Liu Q L, et al. The influence of microstructure on the hydrogen embrittlement susceptibility of martensitic advanced high strength steels [J]. Mater. Today Commun., 2018, 17: 1
[27] Xu Z Y, Zhang P Y, Zhang B, et al. Effect of hydrostatic pressure on hydrogen behavior on the surface of X70 pipeline steel [J]. J. Mater. Res. Technol., 2023, 25: 5907
[28] Xiong X L, Ma H X, Tao X, et al. Hydrostatic pressure effects on the kinetic parameters of hydrogen evolution and permeation in Armco iron [J]. Electrochim. Acta, 2017, 255: 230
[29] Liu R, Cui Y, Liu L, et al. Study on the mechanism of hydrostatic pressure promoting electrochemical corrosion of pure iron in 3.5% NaCl solution [J]. Acta Mater., 2021, 203: 116467
[30] Xiong X L, Tao X, Zhou Q J, et al. Hydrostatic pressure effects on hydrogen permeation in A514 steel during galvanostatic hydrogen charging [J]. Corros. Sci., 2016, 112: 86
[31] Martiniano G A, Bose Filho W W, Garcia R P, et al. Temperature effect on hydrogen embrittlement susceptibility of a high strength martensitic steel [J]. Int. J. Hydrogen Energy, 2024, 110: 457
[32] Dwivedi S K, Vishwakarma M. Effect of hydrogen in advanced high strength steel materials [J]. Int. J. Hydrogen Energy, 2019, 44: 28007
[1] TANG Yixin, ZHANG Fei, CUI Zhongyu, CUI Hongzhi, LI Yizhou. Effect of Hydrogen on Crevice Corrosion Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2025, 45(2): 431-437.
[2] LIU Zhe, DENG Chengman, WEI Junsheng, XIA Da-Hai. Fast Evaluation of Resistance to High Temperature Steam Sterilization Process for Organic Coating Coated Tinplate by Electrochemical Method[J]. 中国腐蚀与防护学报, 2024, 44(4): 883-890.
[3] XU Yunfeng, WANG Shaofeng, HE Long, LIU Dong, HUANG Feng, LIU Jing. Effect of Eco Pickled Surface Treatment on Hydrogen Embrittlement Sensitivity of QStE700TM Steel[J]. 中国腐蚀与防护学报, 2024, 44(3): 691-699.
[4] PEI Yingying, GUAN Fang, DONG Xucheng, ZHANG Ruiyong, DUAN Jizhou, HOU Baorong. Effect of Desulfovibrio Bizertensis SY-1 on Corrosive Behavior of Metal Materials Under Cathodic Polarization[J]. 中国腐蚀与防护学报, 2024, 44(2): 345-354.
[5] LI Min, HU Lingyue, HU Kefeng, SONG Yao, ZHANG Zequn, LI Zongxin, ZHANG Bowei, DONG Chaofang, WU Junsheng. Crevice Corrosion Behavior of 316L Stainless Steel in Deep-sea Environment[J]. 中国腐蚀与防护学报, 2023, 43(6): 1375-1382.
[6] LI Zhenxin, LV Meiying, DU Min. Effect of Combined Potential Polarization on Corrosion of X65 Steel in Seawater Inoculated with Iron Oxiding Bacteria[J]. 中国腐蚀与防护学报, 2022, 42(2): 211-217.
[7] WANG Zhen, LIU Jing, ZHANG Shiqi, HUANG Feng. Effect of Strain Rate on Hydrogen Embrittlement Susceptibility of DP780 Steel with Hydrogen Pre-charging[J]. 中国腐蚀与防护学报, 2022, 42(1): 106-112.
[8] Qi GUI, Dajiang ZHENG, Guangling SONG. Electrochemically Accelerated Evaluation of Protectiveness for an Alkyd Varnish Coating[J]. 中国腐蚀与防护学报, 2018, 38(3): 274-282.
[9] Fang GUAN, Xiaofan ZHAI, Jizhou DUAN, Baorong HOU. Progress on Influence of Cathodic Polarization on Sulfate-reducing Bacteria Induced Corrosion[J]. 中国腐蚀与防护学报, 2018, 38(1): 1-10.
[10] Teng LI, Weiliang JIN, Chen XU, Jianghong MAO. Determination of Steady Critical Current Density of Hydrogen Evolution During Electrochemical Repair Process of Reinforced Concrete[J]. 中国腐蚀与防护学报, 2017, 37(4): 382-388.
[11] Wang GUO,Weimin ZHAO,Timing ZHANG,Tianhai DU,Yong WANG. Hydrogen Permeation Behavior of X80 Steel under Cathodic Polarization and Stress[J]. 中国腐蚀与防护学报, 2015, 35(4): 353-358.
[12] CAO Pan, ZHOU Tingting, BAI Xiuqin, YUAN Chengqing. Research Progress on Corrosion and Protection in Deep-sea Environment[J]. 中国腐蚀与防护学报, 2015, 35(1): 12-20.
[13] ZHANG Timing, ZHAO Weimin, GUO Wang, WANG Yong. Susceptibility to Hydrogen Embrittlement of X65 Steel Under Cathodic Protection in Artificial Sea Water[J]. 中国腐蚀与防护学报, 2014, 34(4): 315-320.
[14] LIN Zhaoqiang, MA Li, YAN Yonggui. EFFECTS OF CATHODIC POLARIZATION ON THE HYDROGEN EMBRITTLEMENT SENSITIVITY OF WELDING LINE IN HIGH STRENGTH HULL STRUCTURAL STEEL[J]. 中国腐蚀与防护学报, 2011, 31(1): 46-50.
[15] CHANG E; YAN Yonggui; LI Qingfen; MA Li. EFFECTS OF CATHODIC POLARIZATION ON THE HYDROGEN EMBRITTLEMENT SENSITIVITY OF 921A STEEL IN SEA WATER[J]. 中国腐蚀与防护学报, 2010, 30(1): 83-88.
No Suggested Reading articles found!