|
|
|
| Effect of NaCl on Hot Corrosion Behavior of 347H Stainless Steel and Ni-based GH3539 Alloy in Molten Nitrate Salts |
PENG Wang1,2, CHEN Jian1, YANG Lingxu2, LIU Huijun2( ), LIANG Jianping3, ZENG Chaoliu2( ) |
1 College of Energy and Power Engineering, Changsha University of Science and Technology, Changsha 410114, China 2 Songshan Lake Materials Laboratory, Dongguan 523808, China 3 Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China |
|
Cite this article:
PENG Wang, CHEN Jian, YANG Lingxu, LIU Huijun, LIANG Jianping, ZENG Chaoliu. Effect of NaCl on Hot Corrosion Behavior of 347H Stainless Steel and Ni-based GH3539 Alloy in Molten Nitrate Salts. Journal of Chinese Society for Corrosion and protection, 2025, 45(6): 1610-1618.
|
|
|
Abstract The effect of NaCl on the corrosion behavior of 347H stainless steel and GH3539 nickel-based alloy in molten (Na, K)NO3 at 600 oC has been investigated. It is shown that the addition of NaCl can markedly accelerate the corrosion of 347H and GH3539 in the melt, with a more pronounced effect on 347H. In molten (Na, K)NO3, 347H can form a Cr-rich oxide scale, while GH3539 produces layered products composed of an outer NiO, a middle metallic Ni, and an inner internal oxidation layer. When NaCl is added to molten (Na, K)NO3, chlorine produced by the reaction between NaCl and oxides formed on the alloy surface diffuses into the alloy matrix, giving rise to chlorination reactions of alloying elements. This chlorine-induced corrosion weakens the bonding between the oxide scale and the alloy matrix, ultimately leading to accelerated corrosion of both alloys, with the effect enhanced by higher NaCl content.
|
|
Received: 11 March 2025
32134.14.1005.4537.2025.082
|
|
|
| Fund: National Key R & D Program of China(2021YFB3700603) |
Corresponding Authors:
LIU Huijun, E-mail: hui_jun_liu@163.comZENG Chaoliu, E-mail: clzeng@imr.ac.cn
|
| [1] |
He Y L, Qiu Y, Wang K, et al. Perspective of concentrating solar power [J]. Energy, 2020, 198: 117373
|
| [2] |
Yao Y B, Zheng S Z, Yang Y, et al. Progress and prospects on solar energy resource evaluation and utilization efficiency in China [J]. Acta Energ. Sol. Sin., 2022, 43: 524
|
|
(姚玉璧, 郑绍忠, 杨 扬 等. 中国太阳能资源评估及其利用效率研究进展与展望 [J]. 太阳能学报, 2022, 43: 524)
|
| [3] |
Li G, Fu Y C, Yu H C, et al. Research progress in thermal energy storage molten salts for concentrated solar power systems [J]. Mater. Rep., 2025, 39: 24010158
|
|
(李 广, 付一川, 余海存 等. 光热发电储能熔盐研究进展 [J]. 材料导报, 2025, 39: 24010158)
|
| [4] |
Bonk A, Braun M, Sötz V A, et al. Solar Salt-Pushing an old material for energy storage to a new limit [J]. Appl. Energy, 2020, 262: 114535
|
| [5] |
Bonk A, Rückle D, Kaesche S, et al. Impact of Solar Salt aging on corrosion of martensitic and austenitic steel for concentrating solar power plants [J]. Sol. Energy Mater. Sol. Cells, 2019, 203: 110162
|
| [6] |
Li K Y, Zhai Y L, Hu X Y, et al. Research progress on high temperature corrosion of eutectic high entropy alloys [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1377
|
|
(李开洋, 翟蕴龙, 胡新宇 等. 共晶高熵合金高温腐蚀的研究进展 [J]. 中国腐蚀与防护学报, 2024, 44: 1377)
|
| [7] |
Li H, Feng X C, Wang X W, et al. Impact of temperature on corrosion behavior of austenitic stainless steels in solar salt for CSP application: An electrochemical study [J]. Sol. Energ. Mater. Sol. Cells, 2022, 239: 111661
|
| [8] |
Bonk A, Ding W J, Hanke A, et al. Effect of gas management on corrosion resistance in molten solar salt up to 620 oC: Corrosion of SS316-types and SS347 [J]. Corros. Sci., 2024, 227: 111700
|
| [9] |
Liu Q Y, Qian J, Barker R, et al. Effect of thermal cycling on the corrosion behaviour of stainless steels and Ni-based alloys in molten salts under air and argon [J]. Sol. Energy, 2022, 238: 248
|
| [10] |
Sun Z, Su L, Gao X Y, et al. Influences of impurity Cl- on the thermal performance of solar salt for thermal energy storage [J]. Sol. Energy, 2021, 216: 90
|
| [11] |
Castro-Quijada M, Faundez D, Rojas R, et al. Improving the working fluid based on a NaNO3-KNO3-NaCl-KCl molten salt mixture for concentrating solar power energy storage [J]. Sol. Energy, 2022, 231: 464
|
| [12] |
Zhu M, Zeng S, Sharif A, et al. Effects of chloride ions on electrochemical reaction of 316 stainless steel in mixtures of molten nitrate salts [J]. Mater. Sci. Eng. Technol., 2020, 51: 1161
|
| [13] |
Li H, Wang X W, Yin X Z, et al. Corrosion and electrochemical investigations for stainless steels in molten solar salt: The influence of chloride impurity [J]. J. Energy Storage, 2021, 39: 102675
|
| [14] |
Wang Y L, Huang J N, Liu H J, et al. Effect of chlorides and sulfates on the corrosion of SS347 and GH3539 in molten solar salt [J]. Sol. Energy Mater. Sol. Cells, 2024, 270: 112820
|
| [15] |
Gomes A, Navas M, Uranga N, et al. High-temperature corrosion performance of austenitic stainless steels type AISI 316L and AISI 321H, in molten solar salt [J]. Sol. Energy, 2019, 177: 408
|
| [16] |
Gao Q, Lu Y W, Yang Y C, et al. Are unexpected chloride ions in molten salt really harmful to stainless steel? [J]. J. Energy Storage, 2022, 54: 105317
|
| [17] |
Zhang J L, Fu G Y, Ning L K, et al. Hot corrosion behavior of a nickel based single crystal high temperature alloy subjected to different heat treatments [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 1625
|
|
(张金龙, 付广艳, 宁礼奎 等. 两种热处理状态的镍基单晶高温合金在900 ℃下(Na2SO4 + NaCl)混合盐中热腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2024, 44: 1625)
|
| [18] |
Yan J D, Liu W H, Tang Z F. Corrosion behavior and mechanism of GH3539 alloy in molten NaCl-KCl-CaCl2 salts at 800 oC [J]. J. Energy Storage, 2024, 98: 112942
|
| [19] |
Liu S L, Ye X X, Yan S, et al. Unexpected accelerated corrosion of Cr in Ni-xW-6Cr alloy with W content increasing [J]. Corros. Sci., 2021, 191: 109761
|
| [20] |
Soleimani Dorcheh A, Durham R N, Galetz M C. Corrosion behavior of stainless and low-chromium steels and IN625 in molten nitrate salts at 600 oC [J]. Sol. Energy Mater. Sol. Cells, 2016, 144:109
|
| [21] |
Bauer T, Laing D, Tamme R. Characterization of sodium nitrate as phase change material [J]. Int. J. Thermophys., 2012, 33: 91
|
| [22] |
Smith S W, Vogel W M, Kapelner S. Solubilities of oxygen in fused Li2CO3-K2CO3 [J]. J. Electrochem. Soc., 1982, 129: 1668
|
| [23] |
Singh I B. The influence of moisture on the oxidation rate of iron in NaNO3 and KNO3 melts [J]. Corros. Sci., 1995, 37: 1981
|
| [24] |
Zeng C L, Wang W, Wu W T. Electrochemical-impedance study of the corrosion of Ni and FeAl intermetallic alloy in molten (0.62Li, 0.38K)2CO3 at 650 oC [J]. Oxid. Met., 2000, 53: 289
|
| [25] |
Palacios A, Navarro M E, Jiang Z, et al. High-temperature corrosion behaviour of metal alloys in commercial molten salts [J]. Sol. Energy, 2020, 201: 437
|
| [26] |
Audigié P, Encinas-Sánchez V, Juez-Lorenzo M, et al. High temperature molten salt corrosion behavior of aluminide and nickel-aluminide coatings for heat storage in concentrated solar power plants [J]. Surf. Coat. Technol., 2018, 349: 1148
|
| [27] |
Guruswamy S, Park S M, Hirth J P, et al. Internal oxidation of Ag-in alloys: Stress relief and the influence of imposed strain [J]. Oxid. Met., 1986, 26: 77
|
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|