Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2025, Vol. 45 Issue (6): 1537-1548    DOI: 10.11902/1005.4537.2025.061
Current Issue | Archive | Adv Search |
Influence of Simulated Electrolyte Droplets with Varied Conductivity on Atmospheric Corrosion of Carbon Steel
LI Zhaonan1, HOU Yucen1, JU Peng2, ZHUANG Tiegang3, CHEN Jingjie1, WANG Mingyu1(), XU Yunze1,4
1 School of Naval Engineering, Dalian University of Technology, Dalian 116024, China
2 China National Offshore Oil Corporation (China) Co. Ltd. , Shanghai Branch, Shanghai 200000, China
3 China Power Construction Corporation East China Survey and Design Institute Co. Ltd. , Hangzhou 310000, China
4 National Key Laboratory of Industrial Equipment Structural Analysis and Optimization and CAE Software, Dalian 116024, China
Cite this article: 

LI Zhaonan, HOU Yucen, JU Peng, ZHUANG Tiegang, CHEN Jingjie, WANG Mingyu, XU Yunze. Influence of Simulated Electrolyte Droplets with Varied Conductivity on Atmospheric Corrosion of Carbon Steel. Journal of Chinese Society for Corrosion and protection, 2025, 45(6): 1537-1548.

Download:  HTML  PDF(17599KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The wire beam electrode technique was systematically employed to investigate the evolution of atmospheric corrosion behavior on carbon steel surfaces under droplets with varying conductivities in laboratory-simulated environments. The experimental results showed that with increasing corrosion time, the local anodic and cathodic currents on the carbon steel surface gradually increased under low-conductivity droplets, while both currents gradually decreased under high-conductivity droplets. When the NaCl concentration inside the droplet was 0.001 mol/L, the anodic and cathodic distributions on the electrode surface appeared relatively random during the initial stage of the experiment. However, when the NaCl concentration exceeded 0.003 mol/L, the distribution of anodic and cathodic currents on the electrode surface exhibited the typical characteristics of the Evans model. Further research revealed that variations in droplet conductivity significantly influenced the mechanisms by which macro-cell and micro-cell currents affected the overall corrosion rate. Under low-conductivity conditions, the macro-cell currents in the cathodic region played a protective role, effectively preventing corrosion. In contrast, under high-conductivity conditions, the cathodic region underwent significant corrosion due to the action of micro-cell currents.

Key words:  atmospheric corrosion      carbon steel      conductivity droplets      wire beam electrode     
Received:  21 February 2025      32134.14.1005.4537.2025.061
ZTFLH:  TG174  
Fund: National Natural Science Foundation of China(52471272)
Corresponding Authors:  WANG Mingyu, E-mail: mingyu.w@foxmail.com

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2025.061     OR     https://www.jcscp.org/EN/Y2025/V45/I6/1537

Fig.1  Physical image of the wire beam electrode (a) and schematic diagram of the local electrochemical test experimental setup (b)
Fig.2  Polarization curves of Q355b carbon steel in NaCl solutions with different concentration
ConcentrationIcorr / mA·cm-2βa / mV·dec-1βc / mV·dec-1IL / mA·cm-2
0.001 mol/L0.012476.9622.580.0233
0.003 mol/L0.015267.4726.770.0232
0.2 mol/L0.019143.77178.841.27 × 1015
0.5 mol/L0.003824.9385.471.17 × 1017
Table 1  Fitting electrochemical parameters of polarization curves for Q355b carbon steel in NaCl solutions with different concentration
Fig.3  Cloud maps of current distribution on Q355b carbon steel after corrosion for 1 min (a), 10 min (b), 30 min (c), 60 min (d), 180 min (e) and 300 min (f) under droplets with 0.001 mol/L (a1-f1), 0.003 mol/L (a2-f2), 0.2 mol/L (a3-f3) and 0.5 mol/L (a4-f4) concentration
Fig.4  Surface potential distribution maps of Q355b carbon steel after corrosion for 1 h (a), 2 h (b), 3 h (c), 4 h (d) and 5 h (e) under droplets with 0.001 mol/L (a1-e1), 0.003 mol/L (a2-e2), 0.2 mol/L (a3-e3) and 0.5 mol/L (a4-e4) concentration
Fig.5  Surface morphologies of the wire beam at the initial (a1-d1), final (a2-d2) and after rust removal (a3-d3) corrosion stages under droplets with 0.001 mol/L (a), 0.003 mol/L (b), 0.2 mol/L (c) and 0.5 mol/L (d) concentration and current distribution maps at the end corrosion stage (a4-d4)
Fig.6  Total anodic current distribution diagrams under droplets with 0.001 mol/L (a1-e1), 0.003 mol/L (a2-e2), 0.2 mol/L (a3-e3) and 0.5 mol/L (a4-e4) concentration for 1 h (a), 2 h (b), 3 h (c), 4 h (d) and 5 h (e)
Fig.7  Diagrams of the galvanic current in the anodic region and the proportion of the total anodic current under droplets with 0.001 mol/L (a1-e1), 0.003 mol/L (a2-e2), 0.2 mol/L (a3-e3) and 0.5 mol/L (a4-e4) concentration for 1 h (a), 2 h (b), 3 h (c), 4 h (d) and 5 h (e)
Fig.8  Corrosion mechanism diagrams of metals under droplets with 0.001 mol/L (a), 0.003 mol/L (b), 0.2 mol/L (c) and 0.5 mol/L (d) concentration
[1] Ma W L, Wang H X, Guo H D, et al. A synergistic experimental and computational study on CO2 corrosion of X65 carbon steel under dispersed droplets within oil/water mixtures [J]. Corros. Commun., 2023, 12: 64
[2] Hu J Z, Hu X, Deng P C, et al. Research progress of seawater galvanic coupling corrosion of steels [J]. Corros. Prot., 2024, 45(1): 51
(胡杰珍, 胡 欣, 邓培昌 等. 钢铁海水电偶腐蚀的研究进展 [J]. 腐蚀与防护, 2024, 45(1): 51)
[3] Liang L H, Wang J, Jiang J, et al. Study of correlativity between micro-droplets phenomenon and atmospheric corrosion process [J]. Equip. Environ. Eng., 2009, 6(3): 1
(梁利花, 王 佳, 姜 晶 等. 微液滴现象与大气腐蚀过程相关性研究 [J]. 装备环境工程, 2009, 6(3): 1)
[4] Wang L, Mou X L, Zhu L, et al. Review of atmospheric corrosivity classification [J]. Equip. Environ. Eng., 2010, 7(6): 24
(王 玲, 牟献良, 朱 蕾 等. 大气环境腐蚀性分类分级研究综述 [J]. 装备环境工程, 2010, 7(6): 24)
[5] Chen Z W, Sun L, Zhang W, et al. Corrosion behavior of marine structural steel in tidal zone based on wire beam electrode technology and partitioned cellular automata model [J]. Corros. Commun., 2022, 5: 87
[6] Wei X. Study of liquid droplets corrode metal in maritime atmospheric environment [J]. Chem. Enterp. Manage., 2013, (18): 197
(魏 雄. 海洋大气环境下液滴对金属腐蚀 [J]. 化工管理, 2013, (18): 197)
[7] Zhou L J, Yang S W. Atmospheric corrosion of steels for marine engineering and development of weathering steels [J]. China Metall., 2022, 32(8): 7
(周鲁军, 杨善武. 海洋工程用钢的大气腐蚀与耐候钢的发展 [J]. 中国冶金, 2022, 32(8): 7)
[8] Wang Y, Liu Y H, Mu X L, et al. Effect of environmental factors on material transfer in thin liquid film during atmospheric corrosion process in marine environment [J]. J. Chin. Soc. Corros. Prot., 2023, 43: 1015
(汪 洋, 刘元海, 慕仙莲 等. 海洋气候大气腐蚀过程环境因素对薄液膜内物质传递的影响 [J]. 中国腐蚀与防护学报, 2023, 43: 1015)
[9] Wang J Y, Zhou X J, Wang H L, et al. Initial corrosion behavior of carbon steel and high strength steel in South China sea atmosphere [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 237
(王靖羽, 周学杰, 王洪伦 等. 碳钢和高强钢在南海大气环境中的初期腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2024, 44: 237)
[10] Cao C, Zheng S S, Hu W B, et al. Review of research on mechanical properties of steel structure under atmospheric environment corrosion [J]. Mater. Rep., 2020, 34: 11162
(曹 琛, 郑山锁, 胡卫兵 等. 大气环境腐蚀下钢结构力学性能研究综述 [J]. 材料导报, 2020, 34: 11162)
[11] El-Mahdy G A, Al-Lohedan H A, Issa Z. Monitoring the corrosion rate of carbon steel under a single droplet of NaCl [J]. Int. J. Electrochem. Sci., 2014, 9: 7977
[12] Rahimi E, Zhang K E, Kosari A, et al. Atmospheric corrosion of iron under a single droplet: A new systematic multi-electrochemical approach [J]. Corros. Sci., 2024, 235: 112171
[13] Wang J, Shui L C. An investigation on oxygen reduction under thin electrolyte layer using Kelvin probe reference electrode [J]. J. Chin. Soc. Corros. Prot., 1995, 15: 180
(王 佳, 水流彻. 使用Kelvin探头参比电极技术研究液层厚度对氧还原速度的影响 [J]. 中国腐蚀与防护学报, 1995, 15: 180)
[14] Tan Y J. Wire beam electrode: A new tool for studying localised corrosion and other heterogeneous electrochemical processes [J]. Corros. Sci., 1999, 41: 229
[15] Tan Y J. Sensing electrode inhomogeneity and electrochemical heterogeneity using an electrochemically integrated multielectrode array [J]. J. Electrochem. Soc., 2009, 156: C195
[16] Tan Y J. Experimental methods designed for measuring corrosion in highly resistive and inhomogeneous media [J]. Corros. Sci., 2011, 53: 1145
[17] Wang Y H, Wang W, Liu Y Y, et al. Study of localized corrosion of 304 stainless steel under chloride solution droplets using the wire beam electrode [J]. Corros. Sci., 2011, 53: 2963
[18] Muster T H, Bradbury A, Trinchi A, et al. The atmospheric corrosion of zinc: The effects of salt concentration, droplet size and dro-plet shape [J]. Electrochim. Acta, 2011, 56: 1866
[19] Wang M Y, Tan M Y, Zhu Y S, et al. Probing top-of-the-line corrosion using coupled multi-electrode array in conjunction with local electrochemical measurement [J]. npj Mater. Degrad., 2023, 7: 16
[20] Tang X, Li J J, Wu Y, et al. Electrochemical formation mechanism of microdroplets on pure iron [J]. Front. Chem., 2021, 9: 610738
[21] Tang X, Ma C R, Orazem M E, et al. Local electrochemical characteristics of pure iron under a saline droplet II: Local corrosion kinetics [J]. Electrochim. Acta, 2020, 354: 136631
[22] Tang X, Ma C R, Zhou X X, et al. Atmospheric corrosion local electrochemical response to a dynamic saline droplet on pure iron [J]. Electrochem. Commun., 2019, 101: 28
[23] Wang Y H, Liu Y Y, Wang W, et al. Influences of the three-phase boundary on the electrochemical corrosion characteristics of carbon steel under droplets [J]. Mater. Corros., 2013, 64: 309
[24] Ma C L, Ma R P, Bai Y H. Characteristics of atmospheric environment in China's coastal areas and atmospheric corrosion in typical coastal regions [J]. Equip. Environ. Eng., 2017, 14(8): 65
(马长李, 马瑞萍, 白云辉. 我国沿海地区大气环境特征及典型沿海地区大气腐蚀性研究 [J]. 装备环境工程, 2017, 14(8): 65)
[25] Cao C N. Estimation of elfctrochemical kinetic parameters of corrosion processes by weak polarization curve fitting [J]. J. Chin. Soc. Corros. Prot., 1985, 5: 155
(曹楚南. 由弱极化曲线拟合估算腐蚀过程的电化学动力学参数 [J]. 中国腐蚀与防护学报, 1985, 5: 155)
[26] Soulié V, Lequien F, Ferreira-Gomes F, et al. Salt-induced iron corrosion under evaporating sessile droplets of aqueous sodium chloride solutions [J]. Mater. Corros., 2017, 68: 927
[27] Jing J, Wang J. Effect of gas/liquid/solid three-phase boundary zone on cathodic process of metal corrosion [J]. Corros. Sci. Prot. Technol., 2009, 21: 79
(姜 晶, 王 佳. 气/液/固三相线界面区的性质在金属腐蚀阴极过程中的作用 [J]. 腐蚀科学与防护技术, 2009, 21: 79)
[28] Wang W W, Wang J, Lu Y H. Research progress on effect of gas/liquid/solid three phase boundary area on cathodic processes [J]. Corros. Sci. Prot. Technol., 2009, 21: 393
(王伟伟, 王 佳, 芦永红. 气/液/固三相线界面区对阴极电化学过程影响的研究进展 [J]. 腐蚀科学与防护技术, 2009, 21: 393)
[29] Gu X L, Dong Z, Yuan Q, et al. Corrosion of stirrups under different relative humidity conditions in concrete exposed to chloride environment [J]. J. Mater. Civ. Eng., 2020, 32: 04019329
[30] Tan Y. Monitoring localized corrosion processes and estimating localized corrosion rates using a wire-beam electrode [J]. Corrosion, 1998, 54: 403
[31] Cao C N. Principles of Electrochemistry of Corrosion [M]. 3rd ed. Beijing: Chemical Industry Press, 2008: 2
(曹楚南. 腐蚀电化学原理 [M]. 3版. 北京: 化学工业出版社, 2008: 2)
[32] Xu R, Wang Y H, Wang J, et al. Influence of spreadability of seawater droplet on electrochemical characteristics of carbon steel [J]. Chin. J. Mater. Res., 2015, 29: 95
(续 冉, 王燕华, 王佳 等. 海水液滴铺展因子对碳钢表面电化学特性的影响 [J]. 材料研究学报, 2015, 29: 95)
[33] Zheng L Y, Cao F H, Liu W J, et al. Corrosion behavior of Q235 in simulated natural environment by electrochemical technology [J]. Equip. Environ. Eng., 2011, 8(4): 8
(郑利云, 曹发和, 刘文娟 等. Q235钢在模拟自然环境下失效行为的电化学研究 [J]. 装备环境工程, 2011, 8(4): 8)
[34] Tan Y J. Understanding the effects of electrode inhomogeneity and electrochemical heterogeneity on pitting corrosion initiation on bare electrode surfaces [J]. Corros. Sci., 2011, 53: 1845
[1] WANG De, ZHANG Fan, WANG Xingqi, ZHANG Hexin, ZHAO Chengzhi, YANG Yange. Long-term Corrosion Resistance of Carbon Steel and Al-alloy with Single Component Fluorocarbon Modified Epoxy Coating[J]. 中国腐蚀与防护学报, 2025, 45(6): 1549-1562.
[2] FENG Yuqin, GUO Tonghan, YU Weihan, WU Wei, ZHANG Daquan. Influence of Sb on Corrosion Behavior of High-strength Structural Steels Exposed to Atmosphere at East Coast Region[J]. 中国腐蚀与防护学报, 2025, 45(5): 1300-1308.
[3] LI Qiubo, SU Yizhe, WU Wei, ZHANG Junxi. Effect of Self-generated Magnetic Field Produced by Electric Current on Atmospheric Corrosion Behavior of Copper[J]. 中国腐蚀与防护学报, 2025, 45(4): 956-964.
[4] ZHANG Guoqing, YU Zhixia, WANG Yuesong, WANG Zhi, JIN Zhengyu, LIU Hongwei. Corrosion Behavior of Steel Materials in Marine Supercritical Carbon Dioxide Environment[J]. 中国腐蚀与防护学报, 2025, 45(4): 1061-1069.
[5] PENG Liyuan, XIE Jingli, CAO Shengfei, TAN Jibo, WU Xinqiang, ZHANG Ziyu. Review on Corrosion Thickness Design of Canister for High-level Radioactive Waste in Japan[J]. 中国腐蚀与防护学报, 2025, 45(3): 563-576.
[6] PENG Wenshan, XIN Yonglei, WEN Jieping, HOU Jian, SUN Mingxian. Effect of Variable- and Constant-Temperature on Corrosion Behavior of High Strength Steel under Polar Ice Cover[J]. 中国腐蚀与防护学报, 2025, 45(3): 821-826.
[7] ZHANG Jiawei, HUANG Feng, WANG Hanmin, LANG Fengjun, YUAN Wei, LIU Jing. Effect of Rolling Scale on Evolution of Fast-stabilized Rust Layer and Corrosion Resistance of a Weathering Steel[J]. 中国腐蚀与防护学报, 2024, 44(4): 891-900.
[8] WANG Gang, LI Zhao, WANG Tao, DUAN Teng, DU Cuiwei. Corrosion Behavior in Soil of Xinjiang of Steels for Photovoltaic Pile Foundation[J]. 中国腐蚀与防护学报, 2024, 44(4): 987-992.
[9] FAN Zhibin, GAO Zhiyue, ZONG Lijun, WU Yaping, LI Xingeng, JIANG Bo, DU Baoshuai. Corrosion Behaviour and Characteristics of 1050A Al-alloy Exposed in Typical Atmospheres of Shandong Province[J]. 中国腐蚀与防护学报, 2024, 44(4): 1055-1063.
[10] LI Tingyu, WEI Jie, CHEN Nan, WAN Ye, DONG Junhua. Corrosion Performance of Electrochemical Sensors for Atmospheric Environments[J]. 中国腐蚀与防护学报, 2024, 44(2): 365-371.
[11] SUN Shuo, DAI Jiaming, SONG Yingwei, AI Caijiao. Corrosion Behavior of Extruded EW75 Mg-alloy in Shenyang Industrial Atmosphere[J]. 中国腐蚀与防护学报, 2024, 44(1): 141-150.
[12] ZHAO Guoxian, LIU Ranran, DING Langyong, ZHANG Siqi, GUO Menglong, WANG Yingchao. Effect of Temperature on CO2-inducedCorrosion Behavior of 5Cr Steel in a Simulated Oilfield Produced High-temperature and High-pressured Water[J]. 中国腐蚀与防护学报, 2024, 44(1): 175-186.
[13] WANG Jingyu, ZHOU Xuejie, WANG Honglun, WU Jun, CHEN Hao, ZHENG Penghua. Initial Corrosion Behavior of Carbon Steel and High Strength Steel in South China Sea Atmosphere[J]. 中国腐蚀与防护学报, 2024, 44(1): 237-245.
[14] WANG Yang, LIU Yuanhai, MU Xianlian, LIU Miaoran, WANG Jun, LI Qiuping, CHEN Chuan. Effect of Environmental Factors on Material Transfer in Thin Liquid Film During Atmospheric Corrosion Process in Marine Environment[J]. 中国腐蚀与防护学报, 2023, 43(5): 1015-1021.
[15] HU Jiezhen, SHANGGUAN Juyu, DENG Peichang, FENG Qilan, WANG Gui, WANG Peilin. Effect of Barnacle Adhesion on Corrosion Behavior of Q235 Steel[J]. 中国腐蚀与防护学报, 2023, 43(5): 1145-1150.
No Suggested Reading articles found!