Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2025, Vol. 45 Issue (6): 1679-1688    DOI: 10.11902/1005.4537.2025.014
Current Issue | Archive | Adv Search |
Failure Behavior of Vinyl Ester Composites in High Temperature and High Humidity Environments
SUN Xinlei1,2, CAO Jingyi3, YIN Wenchang3, FANG Zhigang3, WANG Feng1(), WANG Xingqi2, YANG Yange2()
1 School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
2 Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3 Unit 92228, People's Liberation Army, Beijing 100072, China
Cite this article: 

SUN Xinlei, CAO Jingyi, YIN Wenchang, FANG Zhigang, WANG Feng, WANG Xingqi, YANG Yange. Failure Behavior of Vinyl Ester Composites in High Temperature and High Humidity Environments. Journal of Chinese Society for Corrosion and protection, 2025, 45(6): 1679-1688.

Download:  HTML  PDF(12557KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The failure behavior of glass fiber reinforced polymer (GFRP) in high temperature and high humidity environments, i.e. 60 oC-80%RH, 60°C-95%RH, and 80 oC-95%RH was investigated by tensile, compressive, flexural, and impact mechanical property tests, combined with morphological characterization, infrared spectral analysis, and moisture absorption rate test. The results show that in high temperature and high humidity environments, humidity mainly affects the saturated water absorption of GFRP, and temperature mainly contributes to the increasing water diffusion coefficient, which leads to the most serious damage to GFRP at 80 oC-95% RH. The aging degree of GFRP shows no obvious difference in the other two environments of 60 oC-80%RH and 60 oC-95%RH. Among the results of tensile, bending, compression, and impact performance test, those of the compression test reveals that the most significant decline in compressive strength of GFRP immerged at 60 oC-80%RH and 60 oC-95%RH, decreasing by 18.18% and 22.22% respectively after 49 d of aging. This may be attributed to the dissolution and plasticization of the resin matrix after water absorption by GFRP; Those of the impact strength test shows that the most significant decrease in impact strength of GFRP occurred at 80 oC-95% RH, decreasing by 51.43% after 49 d of aging, which is mainly due to the destruction of the resin/fiber interface.

Key words:  high temperature and high humidity      composite      aging      mechanical property      failure mechanism     
Received:  09 January 2025      32134.14.1005.4537.2025.014
ZTFLH:  TG172.3  
Corresponding Authors:  YANG Yange, E-mail: ygyang@imr.ac.cnWANG Feng, E-mail: wf9709@126.com

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2025.014     OR     https://www.jcscp.org/EN/Y2025/V45/I6/1679

Experimental conditionAging time / d
60 oC-80%RH0, 7, 21, 35, 49
60 oC-95%RH0, 7, 21, 35, 49
80 oC-95%RH0, 10, 21, 30, 49
Table 1  Test conditions and aging time
Fig.1  Microscopic morphologies of GFRP samples after aging for different time in 60 oC-80%RH environment: (a, b) 0 d, (c, d) 21 d, (e, f) 49 d
Fig.2  Microscopic morphologies of GFRP samples after aging for different time in 60 oC-95%RH environment: (a, b) 0 d, (c, d) 21 d, (e, f) 49 d
Fig.3  Microscopic morphologies of GFRP samples after aging for different time in 80 oC-95%RH environment: (a, b) 0 d, (c, d) 21 d, (e, f) 49 d
Fig.4  Variation of tensile properties of GFRP specimens with aging time: (a) tensile strength, (b) tensile modulus
Fig.5  Variation of compressive properties of GFRP specimens with aging time
Fig.6  Variation of flexural properties of GFRP specimens with aging time: (a) flexural strength, (b) flexural modulus
Fig.7  Variation of impact properties of GFRP specimens with aging time
Fig.8  Mechanical strength degradation rate of GFRP specimens after aging for 49 d
Fig.9  Structural formula of vinylester resin
Fig.10  Infrared spectra of GFRP specimens after aging for 49 d
Fig.11  Variation of moisture absorption of GFRP specimens with aging time
Experimental conditionEffective equilibrium water uptake (M) / %Diffusion coefficient(D) / mm2·h-1

Coefficient of

determination (R2)

60 oC-80%RH0.160.00730.9697
60 oC-95%RH0.280.00790.9893
80 oC-95%RH0.320.01050.9986
Table 2  Nonlinear fitting parameters for Fick diffusion
Fig.12  Aging mechanism of GFRP under 60 oC-80%RH and 60 oC-95%RH environments: (a) moisture penetration, (b) damage generation, (c) damage aggravation
Fig.13  Aging mechanism of GFRP in 80 oC-95%RH environment: (a) moisture penetration, (b) matrix damage, (c) fiber and interface damage
[1] Liu T Q, Liu X, Feng P. A comprehensive review on mechanical properties of pultruded FRP composites subjected to long-term environmental effects [J]. Composites, 2020, 191B: 107958
[2] Ding K K, Liu S T, Guo W M, et al. Prediction for corrosion aging of polyethylene in marine atmospheric environment of Qingdao [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 1070
(丁康康, 刘少通, 郭为民 等. 聚乙烯青岛海洋大气环境腐蚀老化预测研究 [J]. 中国腐蚀与防护学报, 2022, 42: 1070)
[3] Yin X L, Liu Y C, Miao Y F, et al. Water absorption, hydrothermal expansion, and thermomechanical properties of a vinylester resin for fiber-reinforced polymer composites subjected to water or alkaline solution immersion [J]. Polymers, 2019, 11: 505
[4] Robin A, Arhant M, Davies P, et al. Effect of aging on the in-plane and out-of-plane mechanical properties of composites for design of marine structures [J]. Composites, 2023, 11C: 100354
[5] Beura S, Chakraverty A P, Pati S N, et al. Effect of salinity and strain rate on sea water aged GFRP composite for marine applications [J]. Mater. Today Commun., 2023, 34: 105056
[6] Li K, Zhai X F, Guan F, et al. Progress on materials and protection technologies for marine propeller [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 495
(李 科, 翟晓凡, 管 方 等. 船用螺旋桨防护技术及其材料研究进展 [J]. 中国腐蚀与防护学报, 2017, 37: 495)
[7] Guermazi N, Tarjem A B, Ksouri I, et al. On the durability of FRP composites for aircraft structures in hygrothermal conditioning [J]. Composites, 2016, 85B: 294
[8] Silva M A G, Sena da Fonseca B, Biscaia H. On estimates of durability of FRP based on accelerated tests [J]. Compos. Struct., 2014, 116: 377
[9] Chen J S, Yang G W, Xiao S N, et al. Effect of temperature and moisture composite environments on the mechanical properties and mechanisms of woven carbon fiber composites [J]. Polym. Compos., 2024, 45: 4618
[10] Zhang X Y, Cao D, Lu F, et al. Aging behavior of T700/5224 composite in hygrothermal environment and chemical media [J]. J. Mater. Eng., 2016, 44: 82
(张晓云, 曹 东, 陆 峰 等. T700/5224复合材料在湿热环境和化学介质中的老化行为 [J]. 材料工程, 2016, 44: 82)
[11] Lv X J, Zhang Q, Xiang M, et al. Influence of environmental factors on the mechanical properties of composites [J]. J. Chin. Soc. Corros. Prot., 2007, 27: 97
(吕小军, 张 琦, 项 民 等. 环境因素对复合材料力学性能的影响 [J]. 中国腐蚀与防护学报, 2007, 27: 97)
[12] Almeida Jr J H S, Souza S D B, Botelho E C, et al. Carbon fiber-reinforced epoxy filament-wound composite laminates exposed to hygrothermal conditioning [J]. J. Mater. Sci., 2016, 51: 4697
[13] He W P, Li X, Li P, et al. Experimental investigation on hygroscopic aging of glass fiber reinforced vinylester resin composites [J]. Polymers, 2022, 14: 3828
[14] Sousa J M, Garrido M, Correia J R, et al. Hygrothermal ageing of pultruded GFRP profiles: Comparative study of unsaturated polyester and vinyl ester resin matrices [J]. Composites, 2021, 140A: 106193
[15] Nie Y N, Shen H, Gu K P, et al. Seawater corrosion resistance and service life prediction of glass fiber reinforced plastic composites [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 357
(聂亚楠, 沈 浩, 谷坤鹏 等. 玻璃钢复合材料耐海水腐蚀性能及抗Cl-渗透寿命预测 [J]. 中国腐蚀与防护学报, 2016, 36: 357)
[16] Shen C H, Springer G S. Moisture absorption and desorption of composite materials [J]. J. Compos. Mater., 1976, 10: 2
[17] Cao Y L, Yu Z Q, Feng P, et al. Performance optimization and deterioration mechanism of fiber reinforced epoxy/vinyl resin composite materials: A review [J]. Acta Mater. Compos. Sin., 2024, 41: 1179
(曹银龙, 于桢琪, 冯 鹏 等. 纤维增强环氧/乙烯基树脂复合材料性能优化与劣化机制研究进展 [J]. 复合材料学报, 2024, 41: 1179)
[18] Wang B M, Ci S Z, Zhou M Z, et al. Effects of hygrothermal and salt mist ageing on the properties of epoxy resins and their composites [J]. Polymers, 2023, 15: 725
[19] Xian G J, Bai Y B, Qi X, et al. Hygrothermal aging on the mechanical property and degradation mechanism of carbon fiber reinforced epoxy composites modified by nylon 6 [J]. J. Mater. Res. Technol., 2024, 33: 6297
[20] Zhou S, Jia Y X, Xu L, et al. Study on the damage behavior of carbon fiber composite after low-velocity impact under hygrothermal aging [J]. J. Appl. Polym. Sci., 2020, 138: 50289
[21] Toscano A, Pitarresi G, Scafidi M, et al. Water diffusion and swelling stresses in highly crosslinked epoxy matrices [J]. Polym. Degrad. Stab., 2016, 133: 255
[22] Bao L R, Yee A F. Moisture diffusion and hygrothermal aging in bismaleimide matrix carbon fiber composites: Part II—Woven and hybrid composites [J]. Compos. Sci. Technol., 2002, 62: 2111
[23] Liu L L, Zhao Z H, Chen W, et al. Interlaminar shear property and high-velocity impact resistance of CFRP laminates after cyclic hygrothermal aging [J]. Int. J. Crashworthiness, 2019, 25: 307
[24] Karad S K, Jones F R. Mechanisms of moisture absorption by cyanate ester modified epoxy resin matrices: the clustering of water molecules [J]. Polymer, 2005, 46: 2732
[1] ZHANG Deping, YAN Lizhen, YU Yang, YANG Guangming, DAI Chunyu, MEGN Le, XU Bo, LIU Zhiyong. Fracture Failure Mechanism of N80 Tubing in Sophisticated CO2 Flooding Production Well Environment[J]. 中国腐蚀与防护学报, 2025, 45(6): 1698-1708.
[2] HE Yan, LIU Yan, TIAN Hua, CHEN Ye. Effect of Low Temperature Diffusion Pretreatment on Precipitation of Phases During Post-aging Treatment for B-containing S31254 Super Austenitic Stainless Steel and its Corrosion Resistance[J]. 中国腐蚀与防护学报, 2025, 45(6): 1773-1778.
[3] LI Li, LI Shanwen, SHI Hongwei, LIANG Guoping, LI Chunlin, SUN Yu, QIN Jin, WANG Wei, HAN En-Hou. Corrosion Behavior and Hydrothermal Aging Mechanism of Epoxy Primer on Al-alloy for High-speed Train[J]. 中国腐蚀与防护学报, 2025, 45(3): 757-764.
[4] LI Xiangdong, LIU Changhao, ZHANG Chi, CHEN Wenjuan, CUI Chenyue, ZHU Yongwen, WANG Shushu. Electrodeposition and Performance of WC-Zn Composite Coatings on Q235 Carbon Steel[J]. 中国腐蚀与防护学报, 2025, 45(3): 795-802.
[5] ZHANG Hongjiang, CHEN Jiaqi, XIE Weiwei, LIU Zhongxuan, DONG Sheying. Design and Performance of Acrylic Acid-motherwort Dregs Composite Carbon Dots for Fluorescent Scale Inhibitor[J]. 中国腐蚀与防护学报, 2025, 45(3): 812-820.
[6] CUI Bolun, ZHAO Jie, LV Ran, LI Jingfa, YU Bo, YAN Donglei. Research Progress in Composite Protection Technology Against Hydrogen-embrittlement and -corrosion for Hydrogen-blended Natural Gas Pipeline[J]. 中国腐蚀与防护学报, 2025, 45(2): 327-337.
[7] LIU Ming, ZHANG Liandong, SUN Zhihua, GAO Meng, YAN Wei, ZHAO Mingliang. Assessment on Performance Decay Induced by Hot Air Aging for Typical Fluoroelastomer Sealing Materials[J]. 中国腐蚀与防护学报, 2025, 45(1): 137-147.
[8] WU Liangliang, YIN Ruozhan, CHEN Zhaoxu, LIANG Junyue, SUN Qingqing, WU Liankui, CAO Fahe. Preparation and High Temperature Oxidation Resistance of Zr-SiO2 Composite Coating on Ti45Al8.5Nb Alloy[J]. 中国腐蚀与防护学报, 2024, 44(6): 1423-1434.
[9] WEI Kezheng, JIANG Wenlong, GONG Yiwei, QIU Xin, DING Hanlin, XIANG Chongchen, WANG Zijian. Effect of Aging Time on Precipitation of Second Phase and Corrosion Performance of Prismatic Plane of As-forged AZ80 Mg-alloy[J]. 中国腐蚀与防护学报, 2024, 44(6): 1557-1565.
[10] YI Shuo, ZHOU Shengxuan, YE Peng, DU Xiaojie, XU Zhenlin, HE Yizhu. Microstructure and Corrosion Resistance of Cu-containing Fe-Mn-Cr-Ni Medium-entropy Alloy Prepared by Selective Laser Melting[J]. 中国腐蚀与防护学报, 2024, 44(6): 1589-1600.
[11] YU Wenjuan, WANG Tiancong, ZHAO Dongyang, XIANG Xueyun, WU Hang, WANG Wen. Lifetime Prediction Model for Barrier-type Corrosion-resistant Coating[J]. 中国腐蚀与防护学报, 2024, 44(6): 1617-1624.
[12] ZHAO Yan, NIAN Lei, WANG Yu, TANG Xiao. Coating Defect Detection Based on Electromagnetic Induction Infrared Thermal Imaging Technology[J]. 中国腐蚀与防护学报, 2024, 44(6): 1641-1648.
[13] HONG Xiaomu, WANG Yongqiang, LI Na, TIAN Kai, DU Juan. Effect of Aging on Microstructures and Localized Corrosion of Custom455 Martensitic Age-hardening Stainless Steel[J]. 中国腐蚀与防护学报, 2024, 44(5): 1285-1294.
[14] LI Hongling, LANG Wuke. Environmentally Friendly Anticorrosive Materials-Preparation and Research Progress of Polyaniline Nanocomposites[J]. 中国腐蚀与防护学报, 2024, 44(4): 874-882.
[15] ZHANG Bangyan, WU Hongbin, HU Xuegang, DONG Jiajian, ZHENG Shijie, YIN Weiwei, ZHANG Fangyu, TIAN Lixi, LIU Guangming. High Temperature Oxidation Behavior of FeCrAl/La2Zr2O7 Composites Prepared by Mechanical Alloying and Spark Plasma Sintering[J]. 中国腐蚀与防护学报, 2024, 44(4): 965-971.
No Suggested Reading articles found!