Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2025, Vol. 45 Issue (6): 1619-1626    DOI: 10.11902/1005.4537.2025.024
Current Issue | Archive | Adv Search |
Effect of Marinilactibacillus Piezotolerans on Corrosion Behavior of 2205 Duplex Stainless Steel
LI Yuqing1,2, ZHANG Tiezhi1, HUANG Xinglin1,2, SUN Zhenmei2, ZHANG Yi2(), YIN Yansheng2()
1 School of Civil Engineering, University of Science and Technology Liaoning, Anshan 114051, China
2 Guangdong Key Laboratory of Materials and Equipment in Harsh Marine Environment, Guangzhou Maritime University, Guangzhou 510725, China
Cite this article: 

LI Yuqing, ZHANG Tiezhi, HUANG Xinglin, SUN Zhenmei, ZHANG Yi, YIN Yansheng. Effect of Marinilactibacillus Piezotolerans on Corrosion Behavior of 2205 Duplex Stainless Steel. Journal of Chinese Society for Corrosion and protection, 2025, 45(6): 1619-1626.

Download:  HTML  PDF(8771KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In the harsh marine environment, various metallic materials in service are subjected to varying degrees of corrosion damage, significantly impacting marine ecosystems and economic efficiency. While the mechanisms of microbial corrosion in shallow marine environments have become a focal point of international research, with substantial progress made in theoretical frameworks and experimental data accumulation, the understanding of microbial corrosion mechanisms under the unique conditions of deep-sea environments remains limited. This study focuses on the effect of deep-sea piezotolerant bacteria on the corrosion of 2205 duplex stainless steel in M. piezotolerans bacteria containing media at 28 oC, namely the optimal growth temperature of that bacteria, aiming to provide theoretical support for microbial corrosion research on metallic materials in deep-sea environments. The M. piezotolerans bacteria used in this study, was isolated and purified from sampling sediments from the South Pacific Gyre. Characterization techniques such as confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM), X-ray photoelectron currents. The uniform corrosion rate was reduced; however, small pitting corrosion sites were observed on the spectroscopy (XPS), and electrochemical impedance spectroscopy (EIS) were employed to examine the corrosion behavior of 2205 duplex stainless steel in the presence of M. piezotolerans. The results demonstrated that the presence of M. piezotolerans may facilitate the formation of a three-dimensional structured corrosion products film on the steel surface. Compared to sterile solutions, steels in M. piezotolerans culture exhibited lower impedance values and higher corrosion rate. Overall, the biofilm formed in the presence of M. piezotolerans on 2205 duplex stainless steel could partially inhibit the uniform corrosion of the steel but exacerbated localized corrosion, resulting in the formation of distinct pitting sites on the steel surface.

Key words:  2205 duplex stainless steel      M. piezotolerans      microbial corrosion      electrochemical analysis      biofilm     
Received:  16 January 2025      32134.14.1005.4537.2025.024
ZTFLH:  TG172  
Fund: Guangzhou 'Yangcheng Scholars' Research Project(2024312143);National Natural Science Foundation of China(52371059);National Natural Science Foundation of China(52001081);National Natural Science Foundation of China(52274296)
Corresponding Authors:  ZHANG Yi, E-mail: zhangyizzdx@163.comYIN Yansheng, E-mail: ysyin@shmtu.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2025.024     OR     https://www.jcscp.org/EN/Y2025/V45/I6/1619

Fig.1  CLSM images of the biofilms of 2205 duplex stainless steel soaked for 7 d (a-d) and 14 d (e-h) in M.piezotolerans culture medium (Note: green and red indicate living and dead bacterias, respectively, Fig.1c and 1g are merged images)
Fig.2  SEM surface images of 2205 duplex stainless steel after immersion in sterilization (a-d) and M. piezotolerans (e-h) culture mediafor 7 d (a, c, e, g) and 14 d (b, d, f, h)
Fig.3  CLSM images of 2205 duplex stainless steel after immersion in sterilization (a, b) and M. piezotolerans (c, d) culture media for 7 d (a, c) and 14 d (b, d), and then pickling
Fig.4  XPS full spectra of 2205 duplex stainless steel after immersion for 14 d in sterilization and M. piezotolerans culture media
GroupCOFeCrCl
Control19.9810.181.569.665.84
M. piezotolerans30.2816.191.5510.941.76
Table 1  XPS analysis results of the surface compositions of 2205 duplex stainless steel after 14 d immersion in sterilization and M. piezotolerans culture media
Fig.5  XPS fine spectra of Fe 2p and Cr 2p on the surfaces of 2205 duplex stainless steel after immersion for 14 d in sterilization (a1, b1) and M. piezotolerans (a2, b2) culture media
Fig.6  Polarization curves of 2205 duplex stainless steel after 14 d immersion in sterilization and M. piezotolerans culturemedia
Fig.7  Electrochemical impedance spectra of 2205 duplex stainless steel after 14 d immersion in sterilization (a) and M. piezotolerans (b) culture media
MediaTime / dRs / Ω·cm2nRf / Ω·cm2nRct / Ω·cm2
Control126440.91.69 × 1080.801.73 × 107
331640.81.58 × 1080.969.66 × 107
528660.91.61 × 1080.913.96 × 107
724580.91.62 × 1080.804.75 × 107
917810.92.54 × 1080.628.18 × 107
1219910.91.19 × 1090.533.15 × 108
1420780.91.22 × 1090.432.28 × 108
M. piezotolerans118330.93.01 × 1050.801.54 × 108
322430.81.05 × 1080.966.74 × 107
516630.81.42 × 1080.803.01 × 107
715860.91.61 × 1080.82.96 × 107
915570.91.51 × 1080.82.79 × 107
1215160.91.01 × 1080.762.79 × 107
1414780.91.01 × 1080.793.96 × 107
Table 2  Fitting results of EIS of 2205 duplex stainless steel after 14 d immersion in sterilization and M. piezotolerans culture media
[1] Iannuzzi M, Frankel G S. The carbon footprint of steel corrosion [J]. npj Mater. Degrada., 2022, 6: 101
[2] Hou B R, Zhang D, Wang P. Marine corrosion and protection: Current status and prospect [J]. Bull. Chin. Acad. Sci., 2016, 31: 1326
(侯保荣, 张 盾, 王 鹏. 海洋腐蚀防护的现状与未来 [J]. 中国科学院院刊, 2016, 31: 1326)
[3] Zhang W Y. Advances in the study of microbiologically influenced corrosion in marine environment [J]. Total Corros. Control, 2017, 31(1): 8
(张文毓. 海洋微生物腐蚀研究进展 [J]全面腐蚀控制, 2017, 31(1): 8)
[4] Wang Z Q, Wang X T, Huang Y L, et al. Metagenomic insights into nutrient and hypoxic microbial communities at the macrofouling/steel interface leading to severe MIC [J]. npj Mater. Degrad., 2023, 7: 41
[5] Pal M K, Lavanya M. Microbial influenced corrosion: Understanding bioadhesion and biofilm formation [J]. J. Bio Tribo Corros., 2022, 8: 76
[6] Traverso P, Canepa E. A review of studies on corrosion of metals and alloys in deep-sea environment [J]. Ocean Eng., 2014, 87: 10
[7] Gerald O J, Li W G, Li Z, et al. Corrosion behaviour of 2205 duplex stainless steel in marine conditions containing Erythrobacter pelagi bacteria [J]. Mater. Chem. Phys., 2020, 239: 122010
[8] Liu Y Z. Study of the corrosion behaviour of 2205 duplex stainless steel in the environment containing pseudomona saeruginosa [D]. Harbin: Harbin Engineering University, 2017
(刘玉芝. 2205双相不锈钢在含铜绿假单胞菌环境下的腐蚀行为研究 [D]. 哈尔滨: 哈尔滨工程大学, 2017)
[9] Hua W X, Sun R, Wang X Y, et al. Corrosion of Q235 carbon steel induced by sulfate-reducing bacteria in groundwater: Corrosion behavior, corrosion product, and microbial community structure [J]. Environ. Sci. Pollut. Res., 2024, 31: 4269
[10] Xu D K, Gu T Y, Lovley D R. Microbially mediated metal corrosion [J]. Nat. Revi. Microbiol., 2023, 21: 705
[11] Giorgi-Pérez A M, Arboleda-Ordoñez A M, Villamizar-Suárez W, et al. Biofilm formation and its effects on microbiologically influenced corrosion of carbon steel in oilfield injection water via electrochemical techniques and scanning electron microscopy [J]. Bioelectrochemistry, 2021, 141: 107868
[12] Zeng X, Alain K, Shao Z Z. Microorganisms from deep-sea hydrothermal vents [J]. Mar. Life Sci. Technol., 2021, 3: 204
[13] Marsili E, Baron D B, Shikhare I D, et al. Shewanella secretes flavins that mediate extracellular electron transfer [J]. Proc. Natl. Acad. Sci. USA, 2008, 105: 3968
[14] Xu P, Zhao M H, Bai P K. Effect of hydroxyethylidene diphosphonic acid on iron bacteria induced corrosion of carbon steel in circulating cooling water [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 988
(许 萍, 赵美惠, 白鹏凯. 循环冷却水中HEDP对铁细菌腐蚀影响及机理研究 [J] 中国腐蚀与防护学报, 2022, 42: 988)
[15] Hamzah E, Hussain M F, Ibrahim Z, et al. Corrosion behaviour of carbon steel in sea water medium in presence of P. aeruginosa bacteria [J]. Arab. J. Sci. Eng., 2014, 39: 6863
[16] Yuan S J, Pehkonen S O. Microbiologically influenced corrosion of 304 stainless steel by aerobic Pseudomonas NCIMB 2021 bacteria: AFM and XPS study [J]. Colloids Surf., 2007, 59B: 87
[17] Lou Y T, Chang W W, Cui T Y, et al. Microbiologically influenced corrosion inhibition mechanisms in corrosion protection: A review [J]. Bioelectrochemistry, 2021, 141: 107883
[18] Ma K J, Wang M M, Shi Z L, et al. Influence of temperature on microbial induced corrosion of tank bottom for crude oil storage [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 1051
(马凯军, 王萌萌, 史振龙 等. 温度对原油储罐罐底微生物腐蚀影响规律的研究 [J] 中国腐蚀与防护学报, 2022, 42: 1051)
[19] Wang Y Y, Zhang R Y, Duan J Z, et al. Extracellular polymeric substances and biocorrosion/biofouling: Recent advances and future perspectives [J]. Int. J. Mol. Sci., 2022, 23: 5566
[20] Li C, Wu J J, Zhang D, et al. Effects of Pseudomonas aeruginosa on EH40 steel corrosion in the simulated tidal zone [J]. Water Res., 2023, 232: 119708
[21] Chang X T, Song J Q, Wang B, et al. Effect of micro-alloying with Cr, N and Al on corrosion resistance of high manganese austenitic steel in acidic salt spray environment [J]. J. Chin. Soc. Corros. Prot., 2024, 44: 47
(常雪婷, 宋嘉琪, 王 冰 等. 微合金化对高锰奥氏体钢在酸性盐雾环境下的耐蚀性能影响研究 [J] 中国腐蚀与防护学报, 2024, 44: 47)
[22] Wang X T. Effects of sulfate-reducing bacteria on the corrosion behavior of 2205 duplex stainless steel in 3.5%NaCl solution [D]. Fushun: LiaoNing Petrochemical University, 2020
(王欣彤. 硫酸盐还原菌对2205双相不锈钢在3.5%NaCl溶液中腐蚀行为影响研究 [D]. 抚顺: 辽宁石油化工大学, 2020)
[23] Li Y P. Corrosion behavior of 2205 duplex stainless steel in extreme environment [D]. Xi'an: Xi'an Shiyou University, 2022
(李彦鹏. 极端环境下2205双相不锈钢腐蚀行为研究 [D] 西安: 西安石油大学, 2022)
[24] Sun Z M, Guo N, Wang X Y, et al. Adhesion and corrosion effects of biofilms on steel surface mediated by hydrophilic exopolysaccharide colanic acid [J]. Corros. Sci., 2024, 229: 111876
[1] DENG Yan, PENG Zipiao, LIU Yichao, ZHONG Xiankang. Preparation and Antimicrobial Properties of a Novel Cu-containing Ti-alloy[J]. 中国腐蚀与防护学报, 2025, 45(6): 1649-1658.
[2] YANG Baoqi, YAN Maocheng, SHI Xianbo, GAO Bowen. SRB Induced Corrosion Behavior of a Novel Microbial Corrosion Resistant Pipeline Steel[J]. 中国腐蚀与防护学报, 2025, 45(6): 1755-1763.
[3] ZHANG Weizhi, FENG Siqiao, SONG Xiaopeng, LIU Aihua, TANG Dezhi, YAN Maocheng, HAN En-Hou. Microbial Corrosion of Polymer Flooding Oil Gathering/Transportation Pipeline[J]. 中国腐蚀与防护学报, 2025, 45(4): 1098-1106.
[4] QI Peng, WANG Peng, ZENG Yan, ZHANG Dun. A Review of Detection Methods and Prediction Models for Microbiologically Influenced Corrosion[J]. 中国腐蚀与防护学报, 2025, 45(3): 602-610.
[5] TANG Yixin, ZHANG Fei, CUI Zhongyu, CUI Hongzhi, LI Yizhou. Effect of Hydrogen on Crevice Corrosion Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2025, 45(2): 431-437.
[6] XU Jingxiang, HUANG Ruiyang, CHU Zhenhua, JIANG Quantong. Corrosion Behavior of High Entropy Alloy FeNiCoCrW0.2Al0.1 in Sulfate-reducing Bacteria Containing Solution[J]. 中国腐蚀与防护学报, 2025, 45(2): 460-468.
[7] GAO Qiuying, ZENG Wenguang, WANG Heng, LIU Yuancong, HU Junying. Effect of Fluid Scouring on Sulfate Reducting Bacteria Induced Corrosion of Pipeline Steel[J]. 中国腐蚀与防护学报, 2023, 43(5): 1087-1093.
[8] XU Ping, ZHAO Meihui, BAI Pengkai. Effect of Hydroxyethylidene Diphosphonic Acid on Iron Bacteria Induced Corrosion of Carbon Steel in Circulating Cooling Water[J]. 中国腐蚀与防护学报, 2022, 42(6): 988-994.
[9] MA Kaijun, WANG Mengmeng, SHI Zhenlong, CHEN Changfeng, JIA Xiaolan. Influence of Temperature on Microbial Induced Corrosion of Tank Bottom for Crude Oil Storage[J]. 中国腐蚀与防护学报, 2022, 42(6): 1051-1057.
[10] LIU Jun, GENG Yongjuan, LI Shaochun, XU Ailing, HOU Dongshuai, LIU Ang, LANG Xiulu, CHEN Xu, LIU Guofeng. Protection Efficacy of TEOS/IBTS Coating on Microbial Fouling of Concrete in Marine Tidal Areas[J]. 中国腐蚀与防护学报, 2022, 42(1): 135-142.
[11] QIAO Jisen, XIA Zonghui, LIU Libo, XU Jiamin, LIU Xudong. Corrosion Resistance of Aluminum-magnesium Bimetal Composite Material Prepared by Isothermal Indirect Extrusion[J]. 中国腐蚀与防护学报, 2021, 41(2): 255-262.
[12] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[13] CHEN Jiachen,WANG Zhongwei,QIAO Lijie,YAN Yu. Interaction between Friction-wear and Corrosion in Special Environment[J]. 中国腐蚀与防护学报, 2019, 39(5): 404-410.
[14] Haisheng TONG,Yanhui SUN,Yanjing SU,Xiaolu PANG,Kewei GAO. Investigation on Hydrogen-induced Cracking Behavior of 2205 Duplex Stainless Steel Used for Marine Structure[J]. 中国腐蚀与防护学报, 2019, 39(2): 130-137.
[15] Xin LI,Xu CHEN,Wuqi SONG,Jiaxing YANG,Ming WU. Effect of pH Value on Microbial Corrosion Behavior of X70 Steel in a Sea Mud Extract Simulated Solution[J]. 中国腐蚀与防护学报, 2018, 38(6): 565-572.
No Suggested Reading articles found!