|
|
|
| Evolution of Corrosion Damage Characteristics of AA7075-T651 Al-alloy Under Mechanical-chemical Interaction Based on Cellular Automata Method |
WENG Shuo1,2,3( ), MENG Chao1, LUO Linghua4, YUAN Yiwen5, ZHAO Lihui1,2,3, FENG Jinzhi1,2,3 |
1. School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China 2. Key Laboratory of Strength and Reliability Evaluation of Auto Mechanical Components for Mechanical Industry, Shanghai 200093, China 3. Shanghai Public Technology Platform for Reliability Evaluation of New Energy Vehicles, Shanghai 200093, China 4. Research Institute of China State Shipbuilding Corporation, Shanghai 201108, China 5. Shanghai Institute of Special Equipment Supervision and Inspection Technology, Shanghai 200062, China |
|
Cite this article:
WENG Shuo, MENG Chao, LUO Linghua, YUAN Yiwen, ZHAO Lihui, FENG Jinzhi. Evolution of Corrosion Damage Characteristics of AA7075-T651 Al-alloy Under Mechanical-chemical Interaction Based on Cellular Automata Method. Journal of Chinese Society for Corrosion and protection, 2024, 44(6): 1507-1517.
|
|
|
Abstract The evolution of corrosion damage characteristics of AA7075-T651 Al-alloy under combined force-chemical interaction was clarified via a combination of cellular automaton method and mechanical numerical simulation software, aiming to simulate the evolution process of corrosion damage of Al-alloy under different load levels, and to revealing the effect of mechanical stress on the variation of corrosion growth rate and morphological characteristics evolution of the Al-alloy as well. The results show that compared with the corrosion of Al-alloy without external load, the number of cells lost due to the corrosion and the maximum corrosion depth or width under the action of force-chemical coupling are significantly increased, while the maximum ratio of corrosion depth to width of the corrosion damage characteristics are significantly increased. It can be seen that the ratio of depth to width gradually increases with the increase of load level. It can be seen that the tensile stress causes the corrosion pit to show a faster growth trend in the longitudinal direction, which in turn causes the stress concentration coefficient to increase, causing the bottom of the corrosion damage characteristic to change from elastic deformation to plastic deformation, ultimately accelerating the corrosion process of the Al-alloy.
|
|
Received: 02 April 2024
32134.14.1005.4537.2024.111
|
|
|
| Fund: National Natural Science Foundation of China(52005336);State Administration for Market Regulation Innovative Talent Program(QNBJ202318) |
Corresponding Authors:
WENG Shuo,E-mail: wengshuo@usst.edu.cn
|
| 1 |
Altuntaş G, Altuntaş O, Bostan B. Characterization of Al-7075/T651 alloy by RRA heat treatment and different pre-deformation effects [J]. Trans Indian Inst. Met., 2021, 74: 3025
|
| 2 |
Weng S, Yu J, Zhao L H, et al. Enhanced corrosion phenomenon of SAPH440 steels in 3.5wt.% NaCl solution by pre-strain deformation behavior [J]. J. Mater. Eng. Perform., 2022, 31: 5851
|
| 3 |
Weng S, Yu J, Zhao L H, et al. Effect of corrosion damage on fatigue behavior of AA7075-T651 Al-alloy [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 486
|
|
(翁 硕, 俞 俊, 赵礼辉 等. 腐蚀损伤对AA7075-T651铝合金疲劳行为影响的研究 [J]. 中国腐蚀与防护学报, 2022, 42: 486)
|
| 4 |
Horner D A, Connolly B J, Zhou S, et al. Novel images of the evolution of stress corrosion cracks from corrosion pits [J]. Corros. Sci., 2011, 53: 3466
|
| 5 |
Qin H, Liu J, Shao Q X, et al. Corrosion behavior and cellular automata simulation of carbon steel in salt-spray environment [J]. npj Mater. Degrad., 2024, 8: 29
|
| 6 |
Zhang X Q, Teng Y X, Guo J. Application of cellular automata in the research of metal material corrosion [J]. Mater. Rep., 2023, 37: 21050078
|
|
(张喜庆, 滕莹雪, 郭 菁. 元胞自动机在金属材料腐蚀研究中的应用 [J]. 材料导报, 2023, 37: 21050078)
|
| 7 |
Chen M C, Wen Q Q. Cellular automata simulation of corrosion process for steel [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 68
|
|
(陈梦成, 温清清. 钢材腐蚀损伤过程的元胞自动机模拟 [J]. 中国腐蚀与防护学报, 2018, 38: 68)
doi: 10.11902/1005.4537.2017.003
|
| 8 |
Cui Y Y, Zhao Y Y. Simulation of aluminum alloy corrosion behavior based on cellular automaton method [J]. Corros. Prot., 2018, 39(10): 794
|
|
(崔艳雨, 赵沅沅. 基于元胞自动机法的铝合金腐蚀行为模拟 [J]. 腐蚀与防护, 2018, 39(10): 794)
|
| 9 |
Wang H, Lv G Z, Wang L, et al. Cellular automaton simulations of surface corrosion damage evolution [J]. Acta Aeronaut. Astronaut. Sin., 2008, 29(6): 1490
|
|
(王 慧, 吕国志, 王 乐 等. 金属表面腐蚀损伤演化过程的元胞自动机模拟 [J]. 航空学报, 2008, 29(6): 1490)
|
| 10 |
Guo D X, Ren K L, Wang Y C, et al. Three-dimensional cellular automata model for predicting local corrosion [J]. Mech. Eng., 2014, 36: 447
|
|
(郭东旭, 任克亮, 王燕昌 等. 金属局部腐蚀的三维元胞自动机模型 [J]. 力学与实践, 2014, 36: 447)
|
| 11 |
Di Caprio D, Vautrin-Ul C, Stafiej J, et al. Cellular automata approach for morphological evolution of localised corrosion [J]. Corros. Eng. Sci. Technol., 2011, 46: 223
|
| 12 |
Fatoba O O, Leiva-Garcia R, Lishchuk S V, et al. Simulation of stress-assisted localised corrosion using a cellular automaton finite element approach [J]. Corros. Sci., 2018, 137: 83
|
| 13 |
Wang H T, Han E-H. Simulation of metastable corrosion pit development under mechanical stress [J]. Electrochim. Acta, 2013, 90: 128
|
| 14 |
Gong K, Wu M, Liu X Y, et al. Nucleation and propagation of stress corrosion cracks: modeling by cellular automata and finite element analysis [J]. Mater. Today Commun., 2022, 33: 104886
|
| 15 |
Lin Z H, Ming N X, He C, et al. Effect of hydrostatic pressure on corrosion behavior of X70 steel in simulated sea water [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 307
|
|
(林朝晖, 明南希, 何 川 等. 静水压力对X70钢在海洋环境中腐蚀行为影响研究 [J]. 中国腐蚀与防护学报, 2021, 41: 307)
doi: 10.11902/1005.4537.2020.061
|
| 16 |
Li B, Dong L H, Wang H D, et al. Research progress on corrosion fatigue of aerospace aluminum alloy [J]. Surf. Technol., 2021, 50(7): 106
|
|
(李 斌, 董丽虹, 王海斗 等. 航空航天铝合金腐蚀疲劳研究进展 [J]. 表面技术, 2021, 50(7): 106)
|
| 17 |
He L R, Yin Z P, Huang Q Q, et al. Simulation of local corrosion on metal surface with CA method [J]. J. Aeronaut. Mater., 2015, 35(2): 54
|
|
(何乐儒, 殷之平, 黄其青 等. 模拟金属表面局部腐蚀的CA方法 [J]. 航空材料学报, 2015, 35(2): 54)
doi: 10.11868/j.issn.1005-5053.2015.2.007
|
| 18 |
Wang Y, Shi H R. Simulation of pitting corrosion under stress based on cellular automata and finite element method [J]. J. Eng. Mater. Technol., 2024, 146: 021006
|
| 19 |
Reinoso-Burrows J C, Toro N, Cortés-Carmona M, et al. Cellular automata modeling as a tool in corrosion management [J]. Materials, 2023, 16: 6051
|
| 20 |
Gutman E M. Mechanochemistry of Materials [M]. Cambridge: Cambridge International Science Publishing, 1998
|
| 21 |
Gutman E M, Solovioff G, Eliezer D. The mechanochemical behavior of type 316L stainless steel [J]. Corros. Sci., 1996, 38: 1141
|
| 22 |
Guo X Y, Kang J F, Zhu J S. 3D cellular automata–based numerical simulation of atmospheric corrosion process on weathering steel [J]. J. Mater. Civ. Eng., 2018, 30: 04018296
|
| 23 |
Zhu L Q, Gu A, Liu H C, et al. Study on characters of corrosion advancing edge of typical high strength aluminum alloys [J]. J. Aeronaut. Mater., 2008, 28(6): 61
|
|
(朱立群, 谷 岸, 刘慧丛 等. 典型高强铝合金材料的点腐蚀坑前缘特征的研究 [J]. 航空材料学报, 2008, 28(6): 61)
|
| 24 |
Guiso S, di Caprio D, de Lamare J, et al. Intergranular corrosion: comparison between experiments and cellular automata [J]. Corros. Sci., 2020, 177: 108953
|
| 25 |
Chen Z W, Sun L, Zhang W, et al. Corrosion behavior of marine structural steel in tidal zone based on wire beam electrode technology and partitioned cellular automata model [J]. Corros. Commun., 2022, 5: 87
|
| 26 |
Pérez-Brokate C F, di Caprio D, Féron D, et al. Pitting corrosion modelling by means of a stochastic cellular automata-based model [J]. Corros. Eng. Sci. Technol., 2017, 52: 605
|
| 27 |
Shafeek H, Soltan H A, Abdel-Aziz M H. Corrosion monitoring in pipelines with a computerized system [J]. Alexandria Eng. J., 2021, 60: 5771
|
| No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|