Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2024, Vol. 44 Issue (6): 1507-1517    DOI: 10.11902/1005.4537.2024.111
Current Issue | Archive | Adv Search |
Evolution of Corrosion Damage Characteristics of AA7075-T651 Al-alloy Under Mechanical-chemical Interaction Based on Cellular Automata Method
WENG Shuo1,2,3(), MENG Chao1, LUO Linghua4, YUAN Yiwen5, ZHAO Lihui1,2,3, FENG Jinzhi1,2,3
1. School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
2. Key Laboratory of Strength and Reliability Evaluation of Auto Mechanical Components for Mechanical Industry, Shanghai 200093, China
3. Shanghai Public Technology Platform for Reliability Evaluation of New Energy Vehicles, Shanghai 200093, China
4. Research Institute of China State Shipbuilding Corporation, Shanghai 201108, China
5. Shanghai Institute of Special Equipment Supervision and Inspection Technology, Shanghai 200062, China
Cite this article: 

WENG Shuo, MENG Chao, LUO Linghua, YUAN Yiwen, ZHAO Lihui, FENG Jinzhi. Evolution of Corrosion Damage Characteristics of AA7075-T651 Al-alloy Under Mechanical-chemical Interaction Based on Cellular Automata Method. Journal of Chinese Society for Corrosion and protection, 2024, 44(6): 1507-1517.

Download:  HTML  PDF(6978KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The evolution of corrosion damage characteristics of AA7075-T651 Al-alloy under combined force-chemical interaction was clarified via a combination of cellular automaton method and mechanical numerical simulation software, aiming to simulate the evolution process of corrosion damage of Al-alloy under different load levels, and to revealing the effect of mechanical stress on the variation of corrosion growth rate and morphological characteristics evolution of the Al-alloy as well. The results show that compared with the corrosion of Al-alloy without external load, the number of cells lost due to the corrosion and the maximum corrosion depth or width under the action of force-chemical coupling are significantly increased, while the maximum ratio of corrosion depth to width of the corrosion damage characteristics are significantly increased. It can be seen that the ratio of depth to width gradually increases with the increase of load level. It can be seen that the tensile stress causes the corrosion pit to show a faster growth trend in the longitudinal direction, which in turn causes the stress concentration coefficient to increase, causing the bottom of the corrosion damage characteristic to change from elastic deformation to plastic deformation, ultimately accelerating the corrosion process of the Al-alloy.

Key words:  cellular automata      finite element analysis      AA7075-T651 Al-alloy      corrosion damage     
Received:  02 April 2024      32134.14.1005.4537.2024.111
ZTFLH:  TG156  
Fund: National Natural Science Foundation of China(52005336);State Administration for Market Regulation Innovative Talent Program(QNBJ202318)
Corresponding Authors:  WENG Shuo,E-mail: wengshuo@usst.edu.cn

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2024.111     OR     https://www.jcscp.org/EN/Y2024/V44/I6/1507

Fig.1  Schematic diagram of pitting of AA7075-T651 aluminum alloy
Fig.2  The Von Neumann model of cellular automata
SymbolRepresentative typeFree movement
MMetal substrateNo
AActive metalNo
BOxide filmNo
WElectrolyte solutionYes
DIntermediate productYes
LCorrosion productYes
Table 1  Types of all cells in cellular automata model
Fig.3  Spatial model diagram of cellular automata
Fig.4  Schematic diagram of corrosion evolution of cellular automata
ParameterValue
Pcorr0.3
PHyd10.3
PHyd20.4
Sed2
PdiffH0.5
PdiffA0.4
PdiffAH0.06
Table 2  Parameter probabilities of cellular automata model
Fig.5  Structure diagram of finite element model of cellular automata
Fig.6  Schematic diagrams of the cross sections of corrosion pits[20]
Fig.7  Simulated cross sections of various corrosion pits in CA model: (a) wide and shallow type, (b) horizontal type, (c) groove type
Fig.8  Morphology evolution of corrosion pit in CA model under the simulation time steps of 100 (a), 200 (b), 300 (c), 400 (d), 500 (e) and 600 (f)
Fig.9  Cross-sectional morphologies of corrosion pits of 2024 (a, c, e, g) and 7B04 (b, d, f, h) aluminum alloys after corrosion for 24 h (a, b), 48 h (c, d), 96 h (e, f) and 192 h (g, h) [23]
Fig.10  Comparison of the numbers of corrosion cells under different corrosion probabilities
Fig.11  Comparison of the number changes of corrosion cells under different precipitation coefficients
Fig.12  Comparison of morphologies of corrosion pits in different simulation time steps under the stresses of 0 (a), 100 MPa (b), 200 MPa (c), 300 MPa (d), 500 MPa (e) and 550 MPa (f)
Fig.13  Comparison of morphologies of corrosion pits at different stress levels under the simulation time steps of 100 (a), 200 (b), 300 (c), 400 (d) and 500 (e)
Fig.14  Influences of stress variation on the number (a), depth (b), width (c) and depth-width ratio (d) of corrosion cells in CA model
Fig.15  Stress (a, b) and strain (c, d) diagrams of corrosion pits under the conditions of 200 simulated time steps and the stresses of 200 MPa (a, c) and 500 MPa (b, d)
1 Altuntaş G, Altuntaş O, Bostan B. Characterization of Al-7075/T651 alloy by RRA heat treatment and different pre-deformation effects [J]. Trans Indian Inst. Met., 2021, 74: 3025
2 Weng S, Yu J, Zhao L H, et al. Enhanced corrosion phenomenon of SAPH440 steels in 3.5wt.% NaCl solution by pre-strain deformation behavior [J]. J. Mater. Eng. Perform., 2022, 31: 5851
3 Weng S, Yu J, Zhao L H, et al. Effect of corrosion damage on fatigue behavior of AA7075-T651 Al-alloy [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 486
(翁 硕, 俞 俊, 赵礼辉 等. 腐蚀损伤对AA7075-T651铝合金疲劳行为影响的研究 [J]. 中国腐蚀与防护学报, 2022, 42: 486)
4 Horner D A, Connolly B J, Zhou S, et al. Novel images of the evolution of stress corrosion cracks from corrosion pits [J]. Corros. Sci., 2011, 53: 3466
5 Qin H, Liu J, Shao Q X, et al. Corrosion behavior and cellular automata simulation of carbon steel in salt-spray environment [J]. npj Mater. Degrad., 2024, 8: 29
6 Zhang X Q, Teng Y X, Guo J. Application of cellular automata in the research of metal material corrosion [J]. Mater. Rep., 2023, 37: 21050078
(张喜庆, 滕莹雪, 郭 菁. 元胞自动机在金属材料腐蚀研究中的应用 [J]. 材料导报, 2023, 37: 21050078)
7 Chen M C, Wen Q Q. Cellular automata simulation of corrosion process for steel [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 68
(陈梦成, 温清清. 钢材腐蚀损伤过程的元胞自动机模拟 [J]. 中国腐蚀与防护学报, 2018, 38: 68)
doi: 10.11902/1005.4537.2017.003
8 Cui Y Y, Zhao Y Y. Simulation of aluminum alloy corrosion behavior based on cellular automaton method [J]. Corros. Prot., 2018, 39(10): 794
(崔艳雨, 赵沅沅. 基于元胞自动机法的铝合金腐蚀行为模拟 [J]. 腐蚀与防护, 2018, 39(10): 794)
9 Wang H, Lv G Z, Wang L, et al. Cellular automaton simulations of surface corrosion damage evolution [J]. Acta Aeronaut. Astronaut. Sin., 2008, 29(6): 1490
(王 慧, 吕国志, 王 乐 等. 金属表面腐蚀损伤演化过程的元胞自动机模拟 [J]. 航空学报, 2008, 29(6): 1490)
10 Guo D X, Ren K L, Wang Y C, et al. Three-dimensional cellular automata model for predicting local corrosion [J]. Mech. Eng., 2014, 36: 447
(郭东旭, 任克亮, 王燕昌 等. 金属局部腐蚀的三维元胞自动机模型 [J]. 力学与实践, 2014, 36: 447)
11 Di Caprio D, Vautrin-Ul C, Stafiej J, et al. Cellular automata approach for morphological evolution of localised corrosion [J]. Corros. Eng. Sci. Technol., 2011, 46: 223
12 Fatoba O O, Leiva-Garcia R, Lishchuk S V, et al. Simulation of stress-assisted localised corrosion using a cellular automaton finite element approach [J]. Corros. Sci., 2018, 137: 83
13 Wang H T, Han E-H. Simulation of metastable corrosion pit development under mechanical stress [J]. Electrochim. Acta, 2013, 90: 128
14 Gong K, Wu M, Liu X Y, et al. Nucleation and propagation of stress corrosion cracks: modeling by cellular automata and finite element analysis [J]. Mater. Today Commun., 2022, 33: 104886
15 Lin Z H, Ming N X, He C, et al. Effect of hydrostatic pressure on corrosion behavior of X70 steel in simulated sea water [J]. J. Chin. Soc. Corros. Prot., 2021, 41: 307
(林朝晖, 明南希, 何 川 等. 静水压力对X70钢在海洋环境中腐蚀行为影响研究 [J]. 中国腐蚀与防护学报, 2021, 41: 307)
doi: 10.11902/1005.4537.2020.061
16 Li B, Dong L H, Wang H D, et al. Research progress on corrosion fatigue of aerospace aluminum alloy [J]. Surf. Technol., 2021, 50(7): 106
(李 斌, 董丽虹, 王海斗 等. 航空航天铝合金腐蚀疲劳研究进展 [J]. 表面技术, 2021, 50(7): 106)
17 He L R, Yin Z P, Huang Q Q, et al. Simulation of local corrosion on metal surface with CA method [J]. J. Aeronaut. Mater., 2015, 35(2): 54
(何乐儒, 殷之平, 黄其青 等. 模拟金属表面局部腐蚀的CA方法 [J]. 航空材料学报, 2015, 35(2): 54)
doi: 10.11868/j.issn.1005-5053.2015.2.007
18 Wang Y, Shi H R. Simulation of pitting corrosion under stress based on cellular automata and finite element method [J]. J. Eng. Mater. Technol., 2024, 146: 021006
19 Reinoso-Burrows J C, Toro N, Cortés-Carmona M, et al. Cellular automata modeling as a tool in corrosion management [J]. Materials, 2023, 16: 6051
20 Gutman E M. Mechanochemistry of Materials [M]. Cambridge: Cambridge International Science Publishing, 1998
21 Gutman E M, Solovioff G, Eliezer D. The mechanochemical behavior of type 316L stainless steel [J]. Corros. Sci., 1996, 38: 1141
22 Guo X Y, Kang J F, Zhu J S. 3D cellular automata–based numerical simulation of atmospheric corrosion process on weathering steel [J]. J. Mater. Civ. Eng., 2018, 30: 04018296
23 Zhu L Q, Gu A, Liu H C, et al. Study on characters of corrosion advancing edge of typical high strength aluminum alloys [J]. J. Aeronaut. Mater., 2008, 28(6): 61
(朱立群, 谷 岸, 刘慧丛 等. 典型高强铝合金材料的点腐蚀坑前缘特征的研究 [J]. 航空材料学报, 2008, 28(6): 61)
24 Guiso S, di Caprio D, de Lamare J, et al. Intergranular corrosion: comparison between experiments and cellular automata [J]. Corros. Sci., 2020, 177: 108953
25 Chen Z W, Sun L, Zhang W, et al. Corrosion behavior of marine structural steel in tidal zone based on wire beam electrode technology and partitioned cellular automata model [J]. Corros. Commun., 2022, 5: 87
26 Pérez-Brokate C F, di Caprio D, Féron D, et al. Pitting corrosion modelling by means of a stochastic cellular automata-based model [J]. Corros. Eng. Sci. Technol., 2017, 52: 605
27 Shafeek H, Soltan H A, Abdel-Aziz M H. Corrosion monitoring in pipelines with a computerized system [J]. Alexandria Eng. J., 2021, 60: 5771
[1] ZHANG Ming, GONG Ning, ZHANG Bo, HUO Hongbo, LI Haonan, ZHONG Xiankang. Evaluation of Tubing Service Life Based on Corrosion Prediction and Strength Calculation[J]. 中国腐蚀与防护学报, 2024, 44(3): 781-788.
[2] WEI Huanhuan, ZHENG Dongdong, CHEN Chen, ZHANG Dawei, WANG Kaili. Corrosion Resistance of Q690 High Strength Steel in Simulated Corrosive Environment of Ocean Splash Zone[J]. 中国腐蚀与防护学报, 2023, 43(1): 186-190.
[3] WENG Shuo, YU Jun, ZHAO Lihui, FENG Jinzhi, ZHENG Songlin. Effect of Corrosion Damage on Fatigue Behavior of AA7075-T651 Al-alloy[J]. 中国腐蚀与防护学报, 2022, 42(3): 486-492.
[4] Mengcheng CHEN, Qingqing WEN. Cellular Automata Simulation of Corrosion Process for Steel[J]. 中国腐蚀与防护学报, 2018, 38(1): 68-73.
[5] LIU Tao,AI Jun,ZHANG Lifang,ZHANG Pengfei,
YANG Zhaohui,XU Chunlin. Life Prediction of Anti-corrosion Coating for Steel Box Girder by In-door Simulation Tests Combined with #br#Image Processing Technique[J]. 中国腐蚀与防护学报, 2013, 33(5): 407-412.
[6] WANG Gang, JIN Ping, TAN Xiaoming, WANG De. RESEARCH ON CORROSION DAMAGE EVOLVEMENT RULE OF 7B04 ALUMINUM ALLOY UNDER OCEAN ENVIRONMENT[J]. 中国腐蚀与防护学报, 2012, 32(4): 338-342.
[7] LI Lei; LI Xiaogang; XIAO Kui; DONG Chaofang. CELLULAR AUTOMATA SIMULATION ON THE EARLY STAGES OF METAL CORROSION IN MOIST ATMOSPHERIC ENVIRONMENT[J]. 中国腐蚀与防护学报, 2010, 30(2): 114-118.
[8] Zuming Liu. An Effect of Corrosion Environment on fatigue Properties of LY12CZ Al-Alloy Typical Bolted Lap Joints[J]. 中国腐蚀与防护学报, 2004, 24(5): 267-271 .
No Suggested Reading articles found!