Please wait a minute...
J Chin Soc Corr Pro  2008, Vol. 28 Issue (2): 99-103     DOI:
Research Report Current Issue | Archive | Adv Search |
CORROSION FATIGUE BEHAVIOR OF 304 STAINLESS STEEL MICRO-SIZED SPECIMENS
华中科技大学化学系
Download:  PDF(1012KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Fatigue tests were performed using a special developed testing machine for 304 stainless steel micro-sized specimens in both the laboratory air and the aggressive (0.9% NaCl solution) environments. The experimental results showed that corrosion behavior on the surface of micro-sized specimens was mainly general corrosion and no obvious corrosion pits were found after pre-corrosion. Corrosion fatigue life of micro-sized specimen in air is about 107 cycles, which is about 10~100 times larger than that of the micro-sized specimen in corrosive solution. The decreasing value of maximum load was monitored during the course of corrosion fatigue tests and rapid decreasing value was observed at the terminal stage of corrosion fatigue tests. A detailed fractographical analysis was presented and no long corrosion fatigue crack was found on the fracture surface.
Key words:  MEMS      corrosion fatigue      austenitic stainless steel      maximum bending stress      
Received:  24 August 2006     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

Cite this article: 

. CORROSION FATIGUE BEHAVIOR OF 304 STAINLESS STEEL MICRO-SIZED SPECIMENS. J Chin Soc Corr Pro, 2008, 28(2): 99-103 .

URL: 

https://www.jcscp.org/EN/     OR     https://www.jcscp.org/EN/Y2008/V28/I2/99

[1]Chuang W H,Rainer K F,Reza G.An electrostatic actuator for fa-tigue testing of low-stress LPCVD silicon nitride thin films[J].Sens.Actuators A,2005,121(4):557-565
[2]Mizutani Y,Higo Y,Ichikawa Y,et al.Corrosion fatigue tests ofmicro-sized specimens[A].Mater.Res.Soc.Symp.Proc.,2001,6573:32-43
[3]Jivkov A P.Evolution of fatigue crack corrosion from surface irreg-ularities[J].Theor.Appl.Fract.Mech.,2003,40:45-54
[4]Muhlstein C L,Brown S B,Ritchie R O.High-cycle fatigue of sin-gle-crystal silicon thin films[J].Microelectromech.Syst.,2001,10:593-600
[5]Spearing S M.Materials issues in microelectromechanical systems(MEMS)[J].Acta Mater.,2000,48:179-196
[6]Wang R G,Wei Y,Zhang Q L,et al.Study on SCC behavior ofaustenitic stainless steels SUS316 and SUS316L in H2S saturatedaqueous solutions containing Cl-[J].J.Chin.Soc.Corros.Prot.,2000,20(1):48-53(王荣光,魏云,张清廉等.奥氏体不锈钢SUS316及SUS316L在含Cl-的饱和H2S水溶液中的应力腐蚀行为研究[J].中国腐蚀与防护学报,2000,20(1):48-53)
[7]Hillman C,Castillo B,Pecht M.Diffusion and absorption of corro-sive gases in electronic encapsulants microelectron[J].Reliab.,2003,43:635-642
[8]Gutmanis I.Corrosion affects on microelectromechanical systems(MEMS)[A].Army Corrosion Summit,Petersburg,F L,March.5-6,2002
[9]Suter T,Bohni H.Microelectrodes for corrosion studies in microsys-tems[J].Electrochim.Acta,2001,47:191-198
[10]Xie J H,Ahmet T Alpas,Derek O.Northwood.A mechanism forthe crack initiation of corrosion fatigue to type 316L stainless steelin Hank's solution[J].Mater.Charact.,2002,48(3):271-271
[11]Schultze J W,Bressel A.Principles of electrochemical micro-andnano-system technologies[J].Electrochim.Acta,2001,47:3-9
[12]Schultze J W,Tsakova V.Electrochemical micro-system technolo-gies:form fundamental research to technical systems[J].Elec-trochim.Acta,1999,44:3605-3612
[1] SUN Xiaoguang,HAN Xiaohui,ZHANG Xingshuang,ZHANG Zhiyi,LI Gangqing,DONG Chaofang. Corrosion Resistance and Environmentally-friendly Chemical Passivation of Welded Joints for Ultra-low Carbon Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(4): 345-352.
[2] Jiapeng LIAO,Xinqiang WU. Review of Notch Effect on Fatigue Behavior of Materials for LWR Plants in High Temperature High Pressure Water[J]. 中国腐蚀与防护学报, 2018, 38(6): 511-516.
[3] Xiwu LIU,Xiaoyan ZHAO,Xin'an CUI,Lanfei XU,Xiaowei LI,Rongqi CHENG. Corrosion Behavior of 304L Stainless Steel in Nitric Acid-Sodium Nitrate Solutions[J]. 中国腐蚀与防护学报, 2018, 38(6): 543-550.
[4] Xiaoyan ZHAO, Xiwu LIU, Xin'an CUI, Fengchang YU. Corrosion Behavior of 304L Steel in Nitric Acid Environment[J]. 中国腐蚀与防护学报, 2018, 38(5): 455-462.
[5] Chao SUN, Xiao YANG, Yuhua WEN. Effect of High-Al Austenitic Stainless Alloy Coatings Prepared by Magnetron Sputtering on High Temperature Oxidation Resistance of 316 Stainless Steel[J]. 中国腐蚀与防护学报, 2017, 37(6): 590-596.
[6] Xiaoqiang LIU,Xuelian XU,Jibo TAN,Yuan WANG,Xinqiang WU,Yuli ZHENG,Fanjiang MENG,En-Hou HAN. Effect of Reactor Coolant Environment on Fatigue Performance of Alloy 690 Steam Generator Tubes[J]. 中国腐蚀与防护学报, 2015, 35(3): 213-219.
[7] LIANG Rui,ZHANG Xinyan,LI Shuxin,JIANG Feng,CHEN Shuaifu. Effect of Semi-elliptical Pit on Stress Concentration of Round Bar[J]. 中国腐蚀与防护学报, 2013, 33(6): 532-536.
[8] TAN Jibo, WU Xinqiang, HAN En-Hou. REVIEW ON RELATIONSHIP BETWEEN DYNAMIC STRAIN AGING AND ENVIRONMENTALLY ASSISTED CRACKING OF STRUCTURAL MATERIALS USED IN NUCLEAR POWER PLANTS[J]. 中国腐蚀与防护学报, 2012, 32(6): 437-442.
[9] YIN Kaiju, QIU Shaoyu, TANG Rui, HONG Xiaofeng, ZHANG Lefu, ZHANG Qiang. CORROSION BEHAVIOR OF SUPER-AUSTENITIC STAINLESS STEEL AL-6XN IN SUPERCRITICAL WATER[J]. 中国腐蚀与防护学报, 2012, 32(5): 375-380.
[10] JIANG Ke, CHEN Xuedong, YANG Tiecheng, ZHANG wei, LIANG Chunlei. HIGH TEMPERATURE NAPHTHENIC ACID CORROSION RESEARCH OF TYPICAL AUSTENITIC STAINLESS STEEL[J]. 中国腐蚀与防护学报, 2012, 32(1): 59-63.
[11] SUN Tao, DENG Bo, XU Juliang, LI Jin, JIANG Yiming. INFLUENCE OF NIOBIUM AND NITROGEN ON THE RESISTANCE TO PITTING AND INTERGRANULAR CORROSION OF 304 AUSTENITIC STAINLESS STEEL[J]. 中国腐蚀与防护学报, 2010, 30(6): 421-426.
[12] XU Shan,DU Nan,ZHAO Qing,YE Mingyang. MONITORING THE PITTING SUSCEPTIBILITY OF AUSTENITIC STAINLESS STEEL IN NaCl SOLUTION BY ELECTRONIC SPECKLE PATTERN INTERFEROMETRY[J]. 中国腐蚀与防护学报, 2010, 30(5): 403-409.
[13] CHEN Meiling LIU Yuandong YANG Li YANG Jun GAO Hong. PITTING CORROSION RESISTANCE OF NANO-SiC POWDERS REINFORCED CAST STAINLESS STEEL[J]. 中国腐蚀与防护学报, 2009, 29(6): 411-414.
[14] ZHOU Huamao WANG Jianqiu ZHANG Bo HAN Enhou ZANG Qishan. ACOUSTIC EMISSION SIGNAL ANALYSIS FOR ROLLED AZ31B MAGNESIUM ALLOY DURING CORROSION FATIGUE PROCESS[J]. 中国腐蚀与防护学报, 2009, 29(2): 81-87.
[15] ;. RESEARCH OF EPR ON THE SUSCEPTIBILITY TO INTERGRANULAR ATTACK OF AUSTENITIC STAINLESS STEEL[J]. 中国腐蚀与防护学报, 2007, 27(1): 54-59 .
No Suggested Reading articles found!